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Executive Summary 

The deliverable D5.3 “Final validation and use case benchmarking “, describes the validation objectives, 

validation scenarios, validation strategies, and planning of the projects use cases and reports results and 

KPIs of the four use cases applications deployed on the respective testbeds into which the AI@EDGE 

platform has been integrated. To meet the use cases requirements, the related applications were designed 

and developed to leverage the project's technological enablers. 

Due to the heterogeneity of the four use cases, each testbed has been equipped with dedicated HW and a 

distinct end-to-end 5G solution. For what concern the SW, the same platform, including the RAN part, has 

been used, although with different configurations. 

The availability of the document allows to declare the achievement of the milestone MS5.6 (Final validation 

completed) expected for M36. 

In summary, this deliverable reports contributions and results from tasks 5.1, 5.2, 5.3, 5.4, and 5.5 that dealt 

with the integration, validation and benchmarking of the project's use cases.  

In particular: 

• Section 2 reports the reference architecture for the use cases implementation and validation 

including the Network and Service Automation (NSAP) layer and the Connect-Compute Platform 

(CCP) layer, also describing the final layout and configuration of the integration testbed used as a 

reference for the deployment of the entire platform. In addition, it reports the 5G network 

infrastructure architecture implemented in the four testbeds for providing the communication and 

Edge computing framework. 

• Sections 3, 4, 5, and 6 are dedicated to the description of the validation objectives, validation 

scenario, validation procedures, and validation results of the four use cases. The validation 

procedures are described through test cases, where each test case describes a certain capability of 

the use case demonstrator. The structure of the test cases is independent of the specific use case in 

order to provide a homogeneous vision to the reader. Finally, the validation results are presented 

on a test case basis. Each Section ends describing benefits and impact of using the AI@EDGE 

platform for enhancing each use case while also highlighting possible improvements after the end 

of the project. 

• Section 7 reports the conclusions. 
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1. Introduction 

The deliverable D5.3 reports the results of the final trials carried out in the testbeds where the four project 

use cases were designed, implemented, tested, and validated.  The initial testbeds have been updated by 

integrating several HW and SW components related to the 5G radio, Edge, and Core functionalities, as well 

as integrating the Connect-Compute Platform. The deliverable includes contributions and results of tasks 

5.1, 5.2, 5.3, 5.4, and 5.5. 

Figure 1 shows the interaction between the technical work packages (WP2, WP3, and WP4) and the 

integration work package (WP5) which defined the evaluation methodology and KPIs measurement for 

benchmarking the AI based applications associated with the four use cases when running on the AI@EDGE 

integrated platform. Furthermore, the connect-compute platform was deployed on all the testbeds also 

integrating a complete 5G network which includes, in each testbed, several HW and SW components related 

to the radio, Edge, and core functionalities. Finally, the use cases applications were designed and developed 

to leverage the project's technological enablers to achieve the expected KPIs. Achieving this result required 

a very complex system integration process driven by the specific requirements, constraints, and needs of 

each testbed, mainly due to the heterogeneity of the four use cases. 

 

 

 

Figure 1 Work Packages interaction 

The first use case (UC1) is about the virtual validation of vehicle cooperative perception, where the 

AI@EDGE platform is used to support cooperative perception in the context of real and emulated vehicles. 

In UC2, the secure and resilient orchestration of a large (I)IoT network is showcased, where the AI@EDGE 

platform is used to operate an AI based intrusion detection system. The third use case (UC3) is about Edge 

AI assisted monitoring of linear infrastructures using drones in BVLOS operation. In this use case, the 

advantages of edge computing and the AI@EDGE Connect-Compute Platform are used for the monitoring 

of roads. In UC4, smart content & data curation for in-flight entertainment services, the delivery of curated 

content over 5G from an on-board edge cloud is showcased. 



 D5.3 Use cases integration, validation, and benchmarking  

 

AI@EDGE (H2020-ICT-52-2020)  15 

Figure 2 summarizes the four use cases. 

 

 

Figure 2 AI@EDGE Use Cases 

2. AI@EDGE Validation environment 

This section reports the final reference architecture for the use cases implementation and validation is 

reported, as have been defined in the deliverable D2.3 [3]. In addition, it describes the final layout and 

configuration of the integration testbed used for the deployment and testing of the entire AI@EDGE 

platform.  

2.1. Reference architecture 

The functional architecture of the AI@EDGE system is shown in Figure 3, serving as a reference for 

mapping the relevant hardware and software components relevant for each use case. The architecture 

consists of two primary operational sections: (i) the Network and Service Automation (NSAP) layer, 

which is where network intelligence is concentrated, responsible for the management of the system network 

automation; and (ii) the Connect-Compute Platform (CCP) layer, which takes charge of orchestrating 

and managing Artificial Intelligence Functions (AIFs) across different edge levels/locations. Moreover, it 

ensures the seamless connectivity between various system elements and oversees the management of its 

computational and hardware resources.  

The system is structured to accommodate AIFs, which, depending on their specific functions, can be 

deployed at any level within the system. Certain AIFs are employed for tasks related to network automation 

and optimization, while others are linked to applications and services. Every component within the system, 
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encompassing both the modules constituting the system's architecture and the AIFs, can utilize network and 

computing resources distributed across the three different tiers, namely Far Edge, Near Edge and Cloud.  

With respect to the state of the architecture described in D5.2 [2], the following additional work was 

conducted towards improving and/or implementing the proposed solutions of AI@EDGE:  

• The definition of the communication service bus for interconnecting the various NSAP modules.  

• The enhancements made to the Non-Real-Time RAN Intelligent Controller (non-RT RIC), which 

is the key element to implementing non-RT intelligent closed loop automation related to the 5G 

System at both the NSAP and 5G System Platform management levels. 

• The definition of the Slice Manager, which provides control over the lifecycle of network slices, 

allowing for Create, Read, Update, and Delete (CRUD) operations on slice instances.  

• The implementation of the Data Pipeline, defined in project Deliverable 3.2, [4], which is 

responsible for delivering up-to-date and relevant data to AIFs. Given that the IOC executes 

multiple AI/ML models, it also relies on the Data Pipeline for data. Additionally, the Data Pipeline 

encompasses the management of the AI/ML models' lifecycle, including instantiation, updating, 

and replacement. Its components include the Data Collector, Data Processor, Data Repository, 

Model Manager, and Model Repository. The Data Collector acquires data from various sources 

necessary for model training. The Data Processor is responsible for cleaning, filtering, and 

preparing data for use by the AIFs. For data that may take time to obtain, the processor can store it 

in the Data Repository, allowing for its reusability by multiple models. The architecture also 

enables the lifecycle management of AI models through the Model Manager. This component 

evaluates the performance of one or more models, either periodically or in response to events 

specified in the AIF descriptor and monitors them accordingly. If the performance falls short of 

expectations, the Model Manager initiates an update, which is stored in the Model Repository along 

with associated metadata. This setup facilitates the reuse of models by different AIFs. 
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Figure 3 AI@EDGE functional architecture 

2.2. Integration testbed 

The integration testbed hosts the main components of the system. Specifically, it contains the instance of 

the Connect-Compute Platform deployed in a MEC system, an instantiation of the NSAP layer with the 

corresponding software modules, and the relevant networking modules for the 5G scenarios. The testbed is 

based on a Kubernetes cluster that spans both Near and Far Edge nodes, while the NSAP part is deployed 

in the Cloud VMs with the dedicated Kubernetes cluster to host its modules.  

The description of the testbed architecture is presented in Figure 4. The integration between Connect-

Compute Platform in MEC and the MTO component in NSAP is performed via publish/subscribe 

mechanism exposed with RabbitMQ1. This allows for integrating multiple MEC systems, such as 

acceleration testbed (hosted in ICCS). The metrics of all the MEC systems and the underlying components 

 

 

 

 
1 Details at: https://www.rabbitmq.com/  

https://www.rabbitmq.com/
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are collected through local Prometheus2 instances at MEC, and then further pushed to NSAP, to the 

Thanos3 metrics aggregator for further usage of the MTO and IOC for the orchestration purposes. 

 

  

Figure 4 Integration testbed architecture 

Remote connection towards the MEC part of the testbed is allowed through a ZeroTier4-enabled virtual 

network. This tool combines the capabilities of VPN and SD-WAN and emulates Layer 2 Ethernet with 

multipath, multicast, and bridging capabilities. The testbed uses two ZeroTier L2 networks, enabling 

different access points: (i) one through the management network, that allows the interaction with 

Kubernetes nodes and orchestration components; and (ii) one connected directly with the 5G Core. As for 

the NSAP part of the testbed, the connection is performed via SSH connectivity as the corresponding 

infrastructure is hosted in private Cloud (MS Azure5) and is exposed to Internet. 

 

 

 

 
2 Please see: https://prometheus.io/  
3 Please see: https://thanos.io/  
4 Please see: https://www.zerotier.com/   
5 Please refer to: https://azure.microsoft.com/en-us  

https://prometheus.io/
https://thanos.io/
https://www.zerotier.com/
https://azure.microsoft.com/en-us
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As already described in Deliverable D5.2 [2] , the Near Edge host of the integrated testbed is connected to 

the SGi-2 port of the Athonet Core and hosts the master node of the K8s cluster, together with the 

LightEdge6 platform and with the Serverless platform (based on Nuclio7). The Far Edge host is connected 

to the SGi-1 port of the Athonet Core (corresponding to the Edge UPF). The updates to the 5G infrastructure 

with respect to the preliminary model of the integrated testbed described in D5.2 are presented in the 

following section. 

2.3.  5G infrastructure 

We described in Section 3.2 of D5.1, [1], and Section 2.2 of D5.2, [2], the 5G network architecture that 

supports AI@EDGE’s UC1, UC2, and UC4. Such use cases were characterized by a common shared control 

plane of the 5G core network, deployed within WP4’s integration testbed (at FBK’s premises) and 

distributed dedicated user planes. Such architecture was slightly updated after the completion of D5.2, and 

its final version is depicted in Figure 5. 

 

 

Figure 5 High-level architecture of the 5G network 

Namely, the consortium decided to separate UC1 from the other use cases for security reasons, related to 

the network isolation requirements imposed by the utilization of POLIMI’s driving simulator. In practice, 

the architectural features of the 5G network of UC2 and UC4 remain the same described in previous 

deliverables, whereas for UC1 we proceeded to deploy at POLIMI a standalone 5G network with dedicated 

core network, fully devoted to the use case’s operation. Such a deployment choice comes without 

 

 

 

 
6 Please see: https://lightedge.io/  
7 Please see: https://nuclio.io/  

https://lightedge.io/
https://nuclio.io/
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drawbacks: the network requirements identified in the initial phases of the project for the effective 

operations of each use case are still met, and the goal of validating an advanced multi-site network 

architecture is still achieved with the network deployment that interconnects the integration testbed, UC2, 

and UC4. 

The testbed devised for validating UC3 is relying on the 5TONIC8 environment to provide a 5G network 

where AI@EDGE platform functionalities have been integrated. The preliminary architecture described in 

Section 2.2 of D5.2, [2], has been updated and its final version is depicted in Figure 6. 

  

Figure 6 Final UC3 testbed architecture 

 

3. Use Case 1: Virtual validation of vehicle cooperative perception 

The use case is developed with the aim of allowing Cooperative Connected and Automated Vehicles 

(CAVs) to safely navigate into a roundabout. Vehicles exchange data related to their trajectories (position 

and velocities). Data are gathered at the network edge and used by the Artificial Intelligence Function (AIF) 

to increase traffic fluidity while avoiding potential collisions. Additionally, the AIF provides a reasonable 

ride comfort to passengers (avoid sudden breakings or accelerations of vehicles). The end-to-end system 

developed to demonstrate this use case is complex and expensive in the real world. So, a virtual reality 

environment has been chosen and adopted. In such an environment a real human driver is included. The 

real human driver operating in a driving simulator9 allows to obtain feedback on his/her perception of 

driving safety, fluidity, and comfort. Both a subjective and objective feedback on perception can be 

 

 

 

 
8 Please refer to: https://www.5tonic.org/  
9 Please see: www.drismi.polimi.it  

https://www.5tonic.org/
http://www.drismi.polimi.it/
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obtained. This feedback is of paramount importance to obtain a trustable evaluation of the results of the use 

case. 

The virtual reality environment is composed by the dynamic driving simulator of Politecnico di Milano and 

the traffic simulator SUMO10. This combination was obtained -according to our knowledge- for the very 

first time in the world. The test of a mix of one really driven vehicle and many emulated vehicles has been 

made. The communication between the emulated vehicles and the human-driven vehicle is based on 

AI@EDGE platform. Each single autonomous vehicle is driven by a Reinforcement Learning (RL) policy. 

More specifically, the objective is using the RL techniques for coordinating the actions of a set of 

cooperative and controlled agents that coexist in a realistic environment. These agents will interact with 

each other and with human driven vehicles. One agent is driven by a real human driver in the driving 

simulator, the others are emulated in the traffic environment. 

3.1.  Validation objectives 

The motivation of this use case is threefold. While running into a roundabout, we aim to increase safety, 

reduce the traffic congestion and pollution, and provide riding comfort. The functionality showcased in 

UC1 are the local traffic outbreak on the edge to increase availability, the extension of the driving simulator 

with a 5G connectivity and the Artificial Intelligence (AI) coordinating the manoeuvres of the automated 

vehicles. 

The local execution of AI algorithms on vehicles with a direct Vehicle-To-Vehicle (V2V) communication 

has some limitations regarding the possibility to identify and solve more complex traffic situations such as 

a roundabout. V2V is typically based on Dedicated Short-Range Communications (DRSC), which has 

strong limitations on bandwidth and communication speed, restricting the capacity of vehicles to 

comprehensively understand the environment around them. These boundaries are even more crucial 

considering complex scenarios, such as the roundabout, and assessing the ever-growing number of sensors 

on automated vehicles and the resulting increased data sent. For this reason, a promising solution in this 

filed is the combination of V2V and Vehicle-to-Infrastructure (V2I) communication architectures, such as 

the one proposed through the presence of a Connect and Compute Platform. 

The introduction of edge computing nodes guarantees the offloading of the coordination functions between 

autonomous vehicles, but exploits the features of 5G networks, ensuring the quality of service required in 

this context.  

The change of communication perspective from “short-range” (802.11p, PC5) to “long-range” (5G) using 

MEC platforms adds some latency in V2V communication but allows for a wider communication between 

vehicles. In this context, the main validation objective is to assess the support of the MEC technology in 

this roundabout scenario. 

 

 

 

 
10 Please see: https://www.eclipse.org/sumo/  

https://www.eclipse.org/sumo/
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We exploit V2NN2V (vehicle-to-network-network to-vehicle paradigm). This is simpler and cheaper with 

respect to V2V paradigm. It also allows for complex scenarios and technologies, such as CCAM 

(Cooperative Connected and Automated Mobility). V2NN2V is driven by the AI@EDGE AIF. This could 

not be obtained with the conventional V2V paradigm, which is only based on vehicular communications 

and does not consider any infrastructure. Furthermore, considering only V2V communications and their 

low-data availability, the cooperation is milder and not able to produce relevant results like the ones enabled 

by a policy in charge of routing the whole traffic, acting as a regulator.  

The main challenges related to the scenario are: 

  

• Virtual reality setup, merging of:  

o the real human driver 

o the automated vehicles (cooperative agents driving autonomous vehicles)  

o the vehicles driven by human driver models.  

• Telematic box and driving simulator integration:  

o Integration of a telematic box with the driving simulator to support the basic connectivity 

features and the correct operation. 

• Local breakout of traffic and offloading:  

o Capability to effectively support data collection via 5G from telematic box to edge servers 

to enable AIF processing such data guaranteeing low latencies whenever needed. 

• Vehicle coordination:  

o Capability to support the vehicles coordination considering the real driver reactions on the 

driving simulator. 

• Objective and subjective feedback from the real human driver:  

o Check that the AIF provides an acceptable and sustainable management of the traffic into 

a roundabout. 

   

Main KPIs related to those challenges are: 

  

• Latency: under 160ms, to allow Connected and Automated Vehicles to safely navigate the 

roundabout.  

• Vehicle density: 12000 vehicle/km as expected number of simulated vehicles per a given area. 

• Positioning: 1.5m to deal with vehicle dynamics and movement. 

 

Table 1 shows how each single KPI is relevant for a specific use case challenge. 
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Table 1 Use case 1 challenges and KPIs 

 Latency Vehicle density Positioning 

Virtual reality setup  X X X 

Telematic Box and 

Driving Simulator 

integration  

X - - 

Local breakout of traffic 

and offloading  

 

X 

 

X - 

Vehicle Coordination  X X 

 

X 

 

Objective and subjective 

feedback 
X X 

 

X 

 

3.2.  Validation scenario 

The aim of the validation is to check that the AIF of AI@EDGE works for the selected scenario, i.e., the 

traffic into a roundabout. The very final validation refers to the positive or negative feedback of the real 

human driver that drives into the roundabout. The objective KPIs that are related to the mentioned feedback 

by the human driver are Latency, Vehicle Density, and Positioning. 

The UC1 testbed facilities are two. The first facility relies on the infrastructure available at POLIMI, where 

the driving simulator will be 5G connected and will send vehicle kinematics data (position, velocity 

acceleration) to the 5G network, in particular to an Edge Node (far and/or near edge) on which a cooperative 

perception algorithm will be executed. A second facility will be the validation site available at CRF in 

Torino where a 5G emulator will test 5G enabling automotive telematic boxes and will provide a traffic 

simulation platform on which the artificial intelligent agents cooperative perception distributed algorithm 

will be validated. 

POLIMI testbed: the first testbed is based on a driving simulator connected to the AI@EDGE platform 

through a 5G telematic box. The driving simulator sends its dynamic data to an edge node on which a 

cooperative perception algorithm is executed. The testbed configuration is depicted in Figure 7. It includes 

the following: 

• VI-Grade driving simulator with its VI-WorldSim11 scenario simulator. 

 

 

 

 
11 Please see: https://www.vi-grade.com/en/products/vi-worldsim/  

https://www.vi-grade.com/en/products/vi-worldsim/
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• Telematic box (DUT: Device Under Test) with the Uu and PC5 connection, V2X ITS stack and the 

data client to send data (AMQP12 client). 

• 5G RAN equipment Ettus X31013 with SRS’s virtualized radio solution (srsRAN Project14). 

• Athonet’s full 5G network (core/edge). 

• Local edge node hosting the Connect-Compute Platform and the NSAP, for the execution of the 

AIF, the data collection server (AMQP broker) and the traffic simulator. 

 

 

 

Figure 7 POLIMI testbed configuration 

CRF testbed: the second testbed is available in CRF in Torino where a 5G emulator is used to test 5G 

enabled automotive telematic boxes. The telematic box sends data to the cooperative perception algorithm, 

deployed on the edge node, through the 5G emulator.  

The testbed configuration is depicted in Figure 8. It includes the following: 

• MT8000A Network Emulator (Non-Stand Alone and Stand-Alone). 

• 5G-NR SA and NSA: DL 2CA, DL 4x4 MIMO, FDD and TDD. 

 

 

 

 
12 Please see: https://www.amqp.org/  
13 Please see: https://www.ettus.com/all-products/x310-kit/  
14 Available at: https://www.srslte.com/5g  

https://www.amqp.org/
https://www.ettus.com/all-products/x310-kit/
https://www.srslte.com/5g
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• LTE / LTE-A: DL 3CA, DL 2x2 MIMO, FDD and TDD. 

• Ability to simulate communications up to 6GHz. 

• Control PC for software to execute validation and test sequences.  

• Local Edge Node with MEC Host for the execution of the AIF, the data collection server (AMQP 

Broker). On the local Edge is also running the traffic simulator that simulates the other vehicles.  

• Telematics Box (DUT: Device Under Test) with the Uu and PC5 connection, V2X ITS stack and 

the data client to send data (AMQP Client). 

• Global navigation satellite system (GNSS) emulator. 

• Vector CANalyzer to support the internal Vehicle bus (CAN Bus).  

 

 

Figure 8 CRF testbed configuration 

3.3.  Validation procedures   

Tests are carried out considering a panel of drivers navigating through the roundabout. The traffic is 

constituted by both automated vehicles and human-driven vehicles. For participants to have a better 

understanding of the situation, they repeat the manoeuvres entering the roundabout from each of its legs. 

For each leg, drivers are asked to compare two different percentages of automated vehicles present in the 

scenario, namely 20% and 80%. The subject is not aware of the predetermined order in which the two traffic 

configurations are presented for all the legs of the roundabouts. For each tester, the order is maintained 

throughout the testing process, while can be different for different testers. After the test, drivers are asked 

to fill a questionnaire about their perceptions. They are asked to focus on their safety feeling and on their 

impressions on traffic smoothness. 
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3.3.1 Test case 1 – Driving Simulator and AIF integration 

 

Test case #1.1: 
AIF implementation in the final simulation 

environment 

Slogan & Objective          
Validation of the new policy operation in the final 

simulation environment. 

Test Scenario (Pre-conditions) 

• New WorldSim scenario implemented 

reproducing the real-world environment. 

• SUMO configuration and network files correctly 

compiled.  

• Established stable connection between AIF, 

Driving Simulator and SUMO co-simulation, 

employing UDP and TCP communication 

protocols.   

Expected Results (Post-

Conditions) 

AIF properly implemented in the testbed and capable 

of driving automated vehicles.  

General Time Plan (Validation 

Campaigns) 
Q3 of 2023 

Test Sequence  

• Identify the geometric and visual details of the 

final real simulation environment. 

• Create the simulation environments in WorldSim 

and SUMO. 

• SUMO scenario validated against measured traffic 

data. 

• Verify the connection between the terminals 

representing AIF and SUMO, via TCP protocol. 

• Verify connection between the Driving Simulator 

and SUMO, via UDP protocol. 

• Introduce and test the new policy 

 

Test case #1.2: Policy behaviour modifications 

Slogan & Objective          

Study of policy behaviour with other vehicles and 

human in the loop; comparison of the policy with the 

previous one. 

Test Scenario (Pre-conditions) 

• Established stable connection between AIF, 

Driving Simulator and SUMO co-simulation. 

• New policy correctly implemented in the testbed. 

Expected Results (Post-

Conditions) 

Defining differences in policy behaviour in relation 

to newly identified objectives, such as reducing 

consumption and optimizing passenger comfort. The 

objective is to achieve improved policy behaviour by 

training in a more intricate and challenging 

environment. 
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General Time Plan (Validation 

Campaigns) 
Q3 of 2023 

Test Sequence  

• Verify the connection between AIF, SUMO and 

the Driving Simulator. 

• Test the new policy in the simulation environment 

with other automated and non-automated vehicles 

and a human participant. 

• Compare the performance of the new policy with 

the previous one 

 

Test case #1.3: Human perception analysis 

Slogan & Objective          
Analysis of human perception of automated and 

connected vehicles in the simulation 

Test Scenario (Pre-conditions) 

• Established stable connection between AIF, 

Driving Simulator, and SUMO co-simulation. 

• Captured the behaviour details of the policy used. 

• Defined a precise structure for test and 

questionnaire to collect results. 

Expected Results (Post-

Conditions) 

• Detailed analysis of policy behaviour. 

• Identification of necessary changes, both to the 

simulation environment and to the policy's 

objective function. 

• Different results with respect to users' abilities and 

experience in the simulator. 

General Time Plan (Validation 

Campaigns) 
Q4 of 2023 

Test Sequence  

• Introduce human in the loop. 

• Define a sequence of tests and a questionnaire 

capable of getting accurate and complete 

indications from participants. 

• Considered several participants with different 

experience and driving skills. 

 

Test case #1.4: Comfort and safety analysis 

Slogan & Objective          
Detailed analysis of a passenger's perception of 

comfort and safety inside the AIF-guided simulator. 

Test Scenario (Pre-conditions) 

• Chosen an automated vehicle to be used to control 

the driving simulator. 

• Utilization of VI-CarRealTime with the SUMO 

simulator in order to define all the required data to 

control the driving simulator on the basis of the 

motion of the chosen automated vehicle. 
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• Established a connection between SUMO and the 

driving simulator allowing the two co-simulations 

to be initialized in parallel. 

Expected Results (Post-

Conditions) 

• Detailed analysis of policy behaviour, in terms of 

comfort and safety perceived by the passenger. 

• Verification of limit values in terms of 

accelerations and jerks used to train the policy. 

General Time Plan (Validation 

Campaigns) 
Q4 of 2023 

Test Sequence  

• Choose the automated vehicles to be replicated. 

• Implement the required procedure between 

SUMO and VI-CarRealTime to obtain the 

required data to control the driving simulator 

motion accordingly to the motion of the chosen 

automated vehicle.  

• Repeat the experiment with different human 

beings as passengers of the automated vehicle to 

evaluate the perceived comfort and safety. 

 

Test case #1.5: Latency analysis 

Slogan & Objective          

Introduction of the latency in both communication 

directions with the edge node where the AIF is 

running. Verification of the ability of the policy to 

adapt to different latency values. 

Test Scenario (Pre-conditions) 

• Testbed completely functioning. 

• Implemented a modifiable communication latency 

in both communication directions with the edge 

node where the AIF is running.  

Expected Results (Post-

Conditions) 

Definition of the maximum communication latency 

that allows a proper operation of the policy. 

General Time Plan (Validation 

Campaigns) 
Q4 of 2023 

Test Sequence  

• Set up the testbed, including the modifiable 

communication latency. 

• Organize several test sessions by increasing the 

communication latency. 

 

3.3.2 Test case 2 – V2X over 5G 

The connectivity tests that will be run in the CRF 5G emulation Lab are described in the following tables. 
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PHASE 2 - Mid Demonstrator 

 Test case #2.1: V2X Messages from DUT to Edge server over 5G 

Slogan & Objective          
• Edge server receives CAM (Cooperative 

Awareness Messages) messages from DUT. 

Test Scenario (Pre-conditions) 

• 5G instance running on MT8000A. 

• Scenario NR cell loaded. 

• Edge server connected to the MT8000A (10 Gbps 

connection). 

• AMQP broker running on the edge server. 

• AMQP client running on DUT side. 

Expected Results (Post-

Conditions) 
• CAM messages successfully received from Edge 

server. 

General Time Plan (Validation 

Campaigns) 
• Q2 of 2023. 

Test Sequence  

• NR1 (SA) cell is available.  

• DUT registers to NR1 cell.  

• RRC connection is active.  

• Data stream from DUT towards AMQP Broker. 

 

PHASE 2 - Mid Demonstrator  

 Test case #2.2: V2X Messages from Edge server to DUT over 5G 

Slogan & Objective          
DUT receives DENM (Decentralised Environmental 

Notification Message) messages from the edge server. 

Test Scenario (Pre-conditions) 

• 5G instance running on MT8000A. 

• Scenario NR cell loaded. 

• Edge server connected to the MT8000A (10 Gbps 

connection). 

• AMQP broker running on the edge server. 

• AMQP client running on DUT side. 

Expected Results (Post-

Conditions) 
• DENM messages successfully received from 

DUT. 

General Time Plan (Validation 

Campaigns) 
• Q3 of 2023. 

Test Sequence  

• NR1 (SA) cell is available.  

• DUT registers to NR1 cell.  

• RRC connection is active.  

• Data stream from AMQP Broker towards DUT. 
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3.3.3 Test case 3 – 5G Connectivity and Local Traffic Breakout 

The following three connectivity tests will be run as soon as the 5G deployment will be completed to 

validate the correct operations of the 5G network in this use case. 

 

PHASE 2 - Mid Demonstrator 

 Test case #3.1: Connection between gNB and 5GC 

Slogan & Objective          • Interface setup between gNB and 5GC. 

Test Scenario (Pre-conditions) 

• 5GC instance (remote control plane and edge user 

plane) running on servers or VMs. 

• 5GC configured with active license and running, 

gNB should be reachable through the network. 

Expected Results (Post-

Conditions) 
• No connection errors. Log messages show gNB 

successfully attached to the AMF. 

General Time Plan (Validation 

Campaigns) 
• Q3 of 2023. 

Test Sequence  

• Configure the network interfaces and the CP, 

including all the related NFs. The system should 

show settings confirmation. 

• Set the IP address of the gNB in the whitelist of 

the 5GC’s web interface. 

• Configure the N2 interface for interconnection 

between AMF and gNB. 

• Connect the gNB to the 5GC (AMF). 

 

PHASE 2 - Mid Demonstrator 

 Test case #3.2: UE’s attach to and detach from the 5G network 

Slogan & Objective          
• Check if UEs successfully attach to and detach 

from the correct PLMN and S-NSSAI. 

Test Scenario (Pre-conditions) 

• 5GC (remote control plane and edge user plane) 

running on servers or VMs and connected to a 

gNB.  

• 5GC configured, gNB reachable and 

interconnected to the 5GC AMF. 

• UE connected to the same gNB. UE must be pre-

provisioned into the 5GC. 

Expected Results (Post-

Conditions) 
• Log messages show UE successfully registered, 

attached and detached to the 5GC. 

General Time Plan (Validation 

Campaigns) 
• Q4 of 2023. 
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Test Sequence  

• Configure the UE (virtual or physical) with the 

correct settings of PLMN, S-NSSAI and DNN. 

The system should show settings confirmation. 

• Register through the GUI the UE into the 5GC 

with SUPI identity. 

• Review the 5GC log messages related to the UE 

attachment. Verify that no error occurred. 

• Detach the UE from the 5GC. 

 

PHASE 2 - Mid Demonstrator 

 Test case #3.3: Connectivity between UE and data network (DN) 

Slogan & Objective          

• Check uplink/downlink traffic between UE and 

DN through the 5GC (UPF), demonstrating the 

end-to-end connectivity between the connected 

devices and the edge servers. 

Test Scenario (Pre-conditions) 

• 5GC (remote control plane and edge user plane) 

running on servers or VMs and connected to a 

gNB.  

• 5GC configured, gNB reachable and 

interconnected to the 5GC AMF.  

• UE connected to the same gNB. UE must be pre-

provisioned into the 5GC and attached to the 5GC. 

Expected Results (Post-

Conditions) 

• Connectivity between UE and DN is operational. 

• iPerf15 shows uplink/downlink traffic. 

• ICMP messages are acknowledged 

General Time Plan (Validation 

Campaigns) 
• Q4 of 2023. 

Test Sequence  

• Establish a new PDU session. Log messages 

should show the successful creation of UPF 

session. 

• Configure iPerf agents on the UE and in a 

reachable server of the DN. Verify that there are 

no registering errors. 

• Execute iPerf session or ping session. The test 

plan should start running. An iPerf or ping 

experiment will be started. 

• Review the 5GC log messages or check iPerf or 

ping results. There should be no errors, warning 

messages or dropped packets. 

 

 

 

 
15 Please see: https://iperf.fr/  

https://iperf.fr/
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3.4.  Validation results 

3.4.1 Test case 1 results – Driving Simulator and AIF integration 

Test case #1.1: AIF implementation in the final simulation environment 

The final roundabout is inspired by a real-world one in Milan, Italy. Figure 9 presents how the roundabout 

looks in the real world, while panels B and C show the simulation environments of SUMO and VI-

WorldSim. It is a four-leg mini-roundabout, with medium-high traffic and, therefore, posing a challenging 

environment for the AV policy.  

A calibration procedure was conducted with the aim of replicating the number of vehicles approaching the 

intersection and their positions during the simulation. Firstly, measurements were taken for the maximum 

queue length, upstream and downstream flows for each leg, considering road vehicles, pedestrians, and 

bicycles on the actual roundabout. This process was repeated for six consecutive time slots, each lasting 10 

minutes. Subsequently, the results of these measurements were compared with simulations conducted in 

SUMO to calibrate the most relevant parameters that define the traffic conditions in the considered scenario. 

Table 2 reports the calibrated parameters of the roundabout model.  

 

Figure 9 Final simulation environment and SUMO’s and VI-WorldSim’s simulation environments  

Table 2 SUMO’s IDM calibrated parameters 

Calibrated parameter Value 

JmCrossingGap 

(minimum distance between the vehicle and the pedestrian that is heading 

toward the point of conflict of its trajectory with that of the vehicle) 

1,3545 

JmTimegapMinor 

(minimum time interval for a vehicle to enter an intersection where it does not 

have the right-of-way, before a vehicle with right-of-way) 

1,7792 

Impatience 

(driver’s intent to obstruct a vehicle with the right of way) 
0,1182 
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Acceleration 

(maximum acceleration for the selected vehicle type) 
1,7634 

Deceleration 

(maximum deceleration for the selected vehicle type) 
4,2939 

Tau 

(minimum time interval between consecutive vehicles) 
1,3472 

ActionStepLength 

(driver reaction time) 
0,5050 

  

The two simulation environments, SUMO and VI-WorldSim, have been connected by a UDC connection 

via lan cable. The communication frequency is 200Hz and the delay between the two environment is less 

than 5ms. The communication protocols have been successfully tested, proving the complete 

implementation of the digital twin of the real scenario. 

  

Test case #1.2 and #1.3: Policy behaviour modifications and Human perception analysis 

PRELIMINARY TESTS 

The final simulation environment has been used to test the final policy running the Cooperative, Connected 

and Automated vehicles (CCAVs) in the network. Firstly, preliminary tests have been performed on a 

restricted group of drivers. A panel of ten participants has been selected for the tests. The participants were 

chosen from individuals without previous experience with driving simulators. The panel consists of 5 

females and 5 males, aged between 22 and 33 years, with driving experience ranging from 1 to 15 years. 

Before the test, each participant was given instructions on how to operate the driving simulator and signed 

an informed consent form. Additionally, each participant spent about ten minutes driving in a simple 

motorway scenario to become familiar with the driving simulator before the actual test. A team of 

psychometrics experts have guided the tests with humans in the loop. The final policy has been analysed, 

considering both qualitative and quantitative results.  

Table 3, Table 4, and Table 5 show the qualitative results represented by the answers to the questionnaire 

filled out by human drivers. 

Table 3 Answers to the first question of the survey 

Regarding the traffic smoothness, which of the following 

statements do you agree with the most? 

Number of 

answers 

Traffic in the scenario with 20% of AVs was definitely safer 

than in the scenario with 80% AVs 
1 

Traffic in the scenario with 20% of AVs was partially safer than 

in the scenario with 80% AVs 
3 

Traffic in the scenario with 20% of AVs was partially less safe 

than in the scenario with 80% AVs 
4 
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Traffic in the scenario with 20% of AVs was definitely less safe 

than in the scenario with 80% AVs 
1 

I did not perceive differences 1 

  

Table 4 Answers to the second question of the survey 

Regarding safety perception, which of the following 

statements do you agree with the most? 

Number of 

answers 

Traffic with 20% of CCAVs was definitely safer 0 

Traffic with 20% of CCAVs was partially safer 2 

Traffic with 20% of CCAVs was partially less safe 2 

Traffic with 20% of CCAVs was definitely less safe 6 

I did not perceive differences 0 

  

Table 5 Answers to the third question of the survey 

Globally, which of the two scenarios did you prefer? 
Number of 

answers 

I definitely preferred the scenario with 20% CCAVs 0 

I partially preferred the scenario with 20% CCAVs 3 

I partially preferred the scenario with 80% CCAVs 3 

I definitely preferred the scenario with 80% CCAVs 4 

I cannot say which scenario I preferred 0 

  

Table 6 and Table 7 present the quantitative analysis of the final policy, considering fuel consumption and 

traffic smoothness. With regards to fuel consumption, the worst-performing and best-performing vehicles 

are used as normalising factors, generating a score between 0, lower fuel consumption and 1, worst 

performance, for each vehicle. The traffic smoothness is represented by the crossing time and number of 

vehicles that completed their path. Both quantities are computed as function of the percentage of CCAVs. 

Crossing time is defined as the time interval between departure and arrival for every vehicle. 
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Table 6 Normalized consumption and emission scores given a penetration rate of CCAVs, considering a simulation of 3600 

seconds 

% CCAVs 
CCAVs 

Human driven vehicles 

(HD) 

  

Consumption Emission Consumption Emission #CCAVs #HD 

0 - - 0.74 0.69 0 1540 

20 0.61 0.56 0.64 0.58 308 1232 

80 0.46 0.38 0.49 0.44 1232 308 

100 0.43 0.36 - - 1540 0 

 

 Table 7 Crossing time and number of vehicles that completed their path as a function of the percentage of CCAVs, considering a 

simulation of 100 seconds 

  0% CCAVs 20% CCAVs 80% CCAVs 

Average crossing time [s] 56.26 54.49 49.01 

Maximum crossing time [s] 87.53 83.32 79.66 

N. vehicles [-] 35 39 41 

Reduction of crossing time Ref. 3.15% 12.88% 

  

Finally, it's worth noting that the policy used for the tests is the result of a refinement of the policy behaviour 

driven by the feedback of test drivers. In order to ensuring the real-world acceptability of such technology, 

also the driving comfort of vehicle occupants is considered. To this end, lateral and longitudinal jerks’ 

constraints have been included in the policy, with defined thresholds rooted in experimental data and on 

the test drivers feedback. This approach resulted in the development of a comprehensive and functional 

motion planning algorithm. 

According to the qualitative results, 80% of the participants perceived the scenario with 80% CCAVs to be 

safer. Additionally, 70% of the participants preferred the scenario with 80% CCAVs. Moreover, as the 

number of CCAVs increased, both CCAVs and HDs reduced their fuel consumption and emissions on 

average, and the average crossing time decreased. 
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FINAL TESTS 

Final tests have been performed on a broader group of drivers. They are intended to obtain a complete 

understanding of the human perception of Cooperative, Connected and Automated Vehicles (CCAVs).  

Forty volunteers (50% male; mean age = 23.6, SD = 2.26; average years of licensed driving experience = 

5.24, SD = 2.86) were recruited and asked to drive along two scenarios, each with four replications. Before 

starting the driving scenarios, participants were asked to answer a Likert-type questionnaire developed to 

assess participants’ disposition towards autonomous vehicles and the prospect of driving alongside 

autonomous vehicles (AVs). At the end of the driving session, participants were asked to answer the same 

questions in order to assess the impact of the driving experience on their willingness to share roads with 

autonomous vehicles. The Wilcoxon match-pairs test was used as a non-parametric analogue of paired 

sample t-tests in paired comparisons involving ordinal data; r was used as an effect size in Wilcoxon test. 

The r value varies from 0 to 1; r values ranging from 0.10 to 0.3 indicate small effect, from 0.30 to 0.5 a 

moderate effect, and r values larger than 0.5 suggests large effect size. Rank-mean consistency analysis 

(i.e., Wilcoxon matched-pairs test) results are summarized in Table 8. 

Table 8 Participants’ Disposition towards Autonomous Vehicles and the Prospect of Driving alongside Autonomous Vehicles: 

Pre-Driving and Post-Driving Comparisons 

Items content 
Before Driving After Driving Comparisons 

Mdn SD Mdn SD ZW r 

Disposition to share roads with AVs 3.00 1.02 3.00 0.92 0.18 .03 

Disposition towards driving an AV 2.00 0.98 2.00 0.98 0.20 .03 

Differences between sharing roads with 

human drivers and AVs 

3.00 0. 89 3.00 0.99 -1.62 .26 

Importance of humans keeping control of 

driving 

3.00 0.88 2.00 1.10 1.95 .31 

Larger predictability of AVs vs. human 

drivers 

2.00 0.88 2.50 0.98 -2.74** .43 

Possibility of positive interactions with AVs  3.00 1.07 3.00 1.03 1.24 .20 

Note. Scores ranges from 1 to 5; AV: autonomous vehicle; ZW: Wilcoxon matched-pairs z value; r: Effect size measure for Wilcoxon 

matched-pairs test. 

** p <.01 

 

As it can be observed in Table 8 , after the driving session, participants considered AVs significantly and 

moderately more predictable than human drivers; notably, this is the only comparison that reached statistical 

significance. Thus, it seems to indicate that the driving sessions in which participants had the opportunity 

to drive alongside autonomous vehicles did not impact negatively on participants disposition towards AVs. 

During each driving session (i.e., 8 scenarios), participants were asked to identify the percentage of AVs 

(i.e., 20% vs. 80%). On average participants were able to correctly identify 3.68 (i.e., 46.0%; SD = 1.32) 

scenarios out of 8 total driving scenarios. This result suggests that the perceived differences between 

scenarios with 20% AVs and 80% AVs was limited; moreover, the number of correctly identified driving 

scenarios significantly discriminated the scenario with a predominance of human drivers (20% AVs, 80% 
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human drivers: M = 2.21, Mdn = 2.00, SD = 0.81), from the scenario with a predominance of AVs (80% 

AVs, 20% human drivers: M = 1.47, Mdn = 1.00, SD = 1.05), Wilcoxon matched-pairs z value = -2.79, p 

<.01, r = -.44. These findings seemed to suggest that no significant differences between the different 

scenarios were perceived by participants, and that the driving session seemed to foster participants’ 

perception of AVs as more predictable than human drivers, which may, in turn, promote the willingness to 

drive alongside AVs. 

 

Test case #1.4: Comfort and safety analysis 

The dynamic driving simulator allows the subjective evaluation of the comfort perceived by a real human 

passenger in a vehicle driven by the policy. The passenger is seated in the driving seat, but the vehicle is 

driven by the policy to simulate a passenger on a CCAV. Although the old policy was efficient in optimizing 

fuel consumption and traffic flow, the levels of acceleration reached by the vehicle were not suitable to be 

used in a real environment. Lateral acceleration reached values higher than 1g in both directions, making 

the vehicle greatly uncomfortable, unsafe and even unrealistic.  

The new policy has been trained to limit accelerations and jerks below limit values obtained from 

experimental tests, corresponding to a lateral acceleration below 0.43 g, a lateral jerk below 1.18 m/s3, and 

a longitudinal jerk below 2.9 m/s3. In this case, the vehicle reaches lower values of lateral acceleration, 

remaining below 0.5 g, and satisfies the limits on jerks. This solution has been tested with real human 

drivers. Passengers' feedback reported as satisfactory the perceived comfort provided by the policy. 

Referring to the time required to navigate the roundabout, the limits on the lateral acceleration reduce the 

performance of the vehicle, and an increment of about 3 seconds in terms of crossing time can be observed 

with respect to the old policy. Figure 10 shows the results in terms of longitudinal and lateral acceleration 

for the old and the new policy. 

 

Figure 10 On the left, lateral and longitudinal accelerations during the roundabout crossing of a CCAV with the old policy. On 

the right, lateral and longitudinal accelerations during the roundabout crossing of a CCAV with the new policy 
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Test case #1.5: Latency analysis 

The policy interaction with the simulation environment has been modified considering the possibility of 

tuning the delay with which it sends its state to the AI@EDGE CCP and receives the observation of the 

environment. Specifically, two buffers have been implemented to create a queue of observations and 

actions, respectively. In this way, it is therefore possible to introduce a simulated delay which is an integer 

multiple of the simulation step.  

To define the real delay, the TBM connection with the AI@EDGE CCP has been tested. A ping has been 

used to evaluate the communication delay since it carries an amount of data comparable with the real one 

given by the CAN bus on the vehicle, and it ensures proper time synchronization in reading time intervals. 

The ping has been used for a total time of 15 minutes to obtain several measurement points and a statistically 

relevant population of data.  

 

Figure 11 Delay measurement data function of their probability, considering a Weibull probability distribution as reference in 

red 

As shown by Figure 11, the data exhibit a behaviour comparable to that of a Weibull probability 

distribution. In Table 9, the characteristics of this distribution are collected, together with its percentiles.  
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Table 9 Weibull probability distribution parameters and percentiles 

Parameter Value Unit of measure 

Weibull distribution parameter #1 41.134 – 

Weibull distribution parameter #2 2.9016 – 

2.5% percentile 11.587 ms 

50% percentile 36.253 ms 

97.5% percentile 64.501 ms 

 

Considering what has been achieved, the communication delay which is used for the experimental test is 

equal to 36.253 ms. This value is real for the ego vehicle driven by the human driving in the dynamic 

driving simulator and simulated for all other vehicles in SUMO.  

3.4.2 Test case 2 results – V2X over 5G 

Test case #2.1: V2X Messages from DUT to Edge server over 5G 

V2X message from DUT to EDGE server are handled by an AMQP client with the encoding and decoding 

locally in addition to the sending and receiving CAM messages. A unidirectional data (in the form of CAM 

packets) flow must be obtained in the policy from the TBM via AMQP broker. Consequently, a client which 

also can decode the CAM packets arriving from TBM via broker, would be needed to facilitate the data 

collection at the policy side. The AMQP client along with the V2X decoder interfaces are being dockized 

and integrated with other applications. Then an end-to-end data communication testing from TBM to Edge 

server has been conducted. In which the generated CAM packets at V2X stack has been sent by TBM to 

the EDGE, and they are received. The CAM packets received at the EDGE being forwarded to the AMQP 

broker and then the Data subscription has been performed as at policy side to use the information about the 

vehicle positioning, speed, and acceleration. 

The test setup on 5G emulation bench with a data connection to a local host server is depicted in  Figure 12 

and the V2X message exchange by the TBM is shown in Figure 13, where AMQP client receives first the 

CAMs from V2X stack and then it forwards to the local host server. For which the communication delays 

are given in Table 9. The main objective of this test case was to understand the correct functioning of the 

TBM with an emulated 5G network in a lab environment and to get the correct set of parameters from the 

5G connectivity point of view. Those parameters then are being used for the connectivity in the POLIMI 

lab for real connection and results are given in the Test case 1.5. 
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Figure 12 Test setup on Virtual Validation bench at CRF site where the CAN data are simulated by CAN analyser 

 

 

Figure 13 V2X message exchange between the TBM and the server 

 

Test case #2.2: V2X Messages from Edge server to DUT over 5G 

The same AMQP Client-Server based method is also used to process V2X messages from EDGE to DUT. 

Under the V2X architecture, a TBM or TCU device often receives CAM messages from nearby vehicles as 

well as other messages from warning traffic stations and roadside devices that complies with ITS-G5 

standards. Most of these messages fall into the V2V and I2V categories, and the UC1 context limits them 

to V2N2V. As a result, a direct V2X message from EDGE to DUT is now outside the purview of this use 
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case. Nevertheless, the TBM that is being examined in this case is able to receive those messages from the 

EDGE, and local decoding can also be done at the V2X stack that is installed on the device. 

3.4.3 Test case 3 results – 5G Connectivity and Local Traffic Breakout 

Test case #3.1: Connection between gNB and 5GC 

No connection errors. Log messages show gNB successfully attached to the AMF. Control plane messages 

between the RAN and the 5GC are correctly exchanged. 

 

Test case #3.2: UE’s attach to and detach from the 5G network 

Log messages show UE successfully registered, attached, and detached to the 5GC. 

 

Test case #3.3: Connectivity between UE and data network (DN) 

Connectivity between UE and DN is operational. 

iPerf16 shows a maximum of 50Mbit/s in download and 5Mbit/s in upload throughput over band n78 (40-

MHz bandwidth). 

ICMP messages are acknowledged. 

 

3.5.  Final remarks 

AI@EDGE CCP has proven to be crucial to orchestrate the traffic in a complex scenario such as the 

roundabout. The most important developments introduced by the project include:  

• The definition of a new communication protocol, called V2N-N2V. This protocol shows better 

performance than others so far used, of which V2V and V2I are examples. Unlike V2V protocols, 

it is capable of handling large amounts of data exchanged between vehicles and the CCP present in 

the centre of the roundabout. This allows for better management of the intersection and the 

development of truly cooperative policies. In contrast to V2I protocols, in this case the 

infrastructure is very simple, allowing a reduction in associated costs. 

• The implemented communication architecture is completely independent of the vehicle type and, 

therefore, the manufacturer. It uses data that each vehicle is capable of generating and provides 

easily applicable indications regardless of the vehicle model. This made it possible to develop a 

system that is extremely adaptable to both different intersections and traffic conditions.  

 

 

 

 
16 Please see: https://iperf.fr/  

https://iperf.fr/
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• 5G mobile communication turns out to be essential for the proper functioning of the system 

employed. Indeed, thanks to it, it is possible to achieve lower values of communication latency and 

ensure the proper functioning of the policy. 4G technology, aversely, would have a much higher 

latency, and autonomous vehicles would suffer from a high mismatch between received and real-

time information. 

• The driving simulator at the DriSMi laboratory of the Politecnico di Milano proved to be 

instrumental in achieving the key results described in this document. Especially for a technology 

still in an early stage of research, a state-of-the-art simulator allowed rapid advancement and the 

acquisition of a database composed of both those obtained from the vehicle and those measured 

directly on humans, thus being able to objectify human response.  

• Another key point to describe the importance of the AI@EDGE project turns out to be the 

enrichment of the literature on the subject and the interaction it had with policymakers. Indeed, 

several papers have been produced using the preliminary results obtained so far and presented at 

various conferences. One of these is EARPA (European Automotive Research Partners 

Association), during which it was possible to update European policymakers on the progress of the 

project and its future development.  

A much larger test campaign was conducted at the DriSMi laboratory of the Politecnico di Milano in early 

December. In section 3.4, a portion of the final results related to subjective perception of the simulation 

environment is presented. Before the final review, they will be enriched with those derived from sensors 

mounted on drivers, aiming to objectify human perception. These final tests and results will ensure new 

possibilities for interaction with policymakers and OEMs in the future. A new paper discussing the project 

in its entirety will also be produced. 

 

4. Use Case 2: Secure and resilient orchestration of large (I)IoT networks 

This use case is showcasing a smart manufacturing scenario with a 5G campus network. The objectives are 

to showcase the security and privacy aspects of the AI@EDGE Connect-Compute Platform leveraging the 

utilisation of AIFs (anomaly and intrusion detection), of NetFPGA17, and federated learning to detect 

intrusions and anomalies in the network.  

4.1.  Validation objectives 

The following functionalities are to be showcased in this use case: 

• Intrusion detection with NetFPGA: Capability to detect botnets that are unknown at the time of 

attack, as well as scan attacks and newly exploited vulnerabilities. Approach based on the 

 

 

 

 
17 Please see: https://netfpga.org/   

https://netfpga.org/
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integration of the Split and Merge algorithm at the state of the art in NetFPGA boards, developed 

by CNAM.  

• Auto configuration of Hyper Parameters for Intrusion detection: The auto configuration of 

hyper parameters to adapt the pre-trained ML models to the deployed environment to improve the 

performance of intrusion detection from INRIA will be integrated. 

• Anomaly Detection AIF: Capability to detect any type of anomalies (attacks, malfunctioning, 

failures, etc) by monitoring the state of the Connect-Compute Platform components (CPU, 

memory, disk, network states) at different layers and domains (containers, physical servers, UEs, 

radio front ends). 

• Local breakout of traffic and offloading: Capability to effectively support data collection via 5G 

from connected devices to edge servers to enable AIF processing of such data, maintaining 

confidentiality and guaranteeing low latencies whenever needed. 

• UC Demonstrator: In the demonstrator all the previously mentioned functionality will be 

integrated and tested in an environment based on a 5G Network, the Connect-Compute Platform 

and robots and sensors for the application, as described in section 4.2. 

4.2.  Validation scenario 

As described in D5.2, in the validation scenario different security mechanisms will be showcased by 

simulating an attack through the Mirai botnet18. The demonstrator setup was extended with an IT Zone, 

which simulates and enterprise network environment. In the scenario an employee desktop from the IT 

Zone is infiltrating the malware, e.g., by opening a malicious email attachment. The botnet will then 

propagate to the Manufacturing Zone and compromise the IoT cameras using default credentials. The IoT 

cameras will then attack the 5G infrastructure with a DDoS attack. Ideally all security AIFs should be able 

to detect the attack on different levels, such as TCP flow (Autoconfiguration of Hyperparameters), IP 

metadata (NetFPGA) and network patterns (Federated Learning Anomaly Detection AIF). 

 

 

 

 

 
18 Please see: https://github.com/jgamblin/Mirai-Source-Code  

https://github.com/jgamblin/Mirai-Source-Code
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Figure 14 Components of the UC2 Testbed 

The Use Case 2 testbed is depicted in Figure 14. It is split into three zones: 

• the IT-Zone. 

• the Demilitarized Zone (DMZ). 

• the Manufacturing Zone.  

In the IT Zone, typical building blocks of an enterprise network are to be found such as mail servers and 

employee desktops. In the Manufacturing Zone the IoT and the RAN can be found, whereby the IoT devices 

are connected to the network over a 5G connection. In the DMZ is the Edge Server, the 5G Core and the 

Central Site. The NetFPGAs connect the gNBs with the UPF and thereby analyze the metadata of the GTP 

traffic packets. In the Edge Server the MEO, the MECPM and the MEC host are located, where the 

showcased AIF are hosted. Namely the Localization and Control of AGVs, the Intrusion Detection AIF 

with Autoconfiguration of Hyperparameters, the Federated Learning Anomaly Detection AIF and the 

Intrusion Detection AIF for the NetFPGAs. The UPF is connected to the control plane of the core on the 

remote central cite and thus showcasing the distributed aspects of the AI@EDGE platform. 

4.3.  Validation procedures   

4.3.1 Test case 1 – Intrusion Detection for Known Attacks 
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Test Case #1 
Network Intrusion Detection based on machine learning for 

Known Attacks 

Slogan & Objective          
Benchmarking of the auto-configuration of a network intrusion 

detection system (NIDS) based on a machine learning algorithm.  

Test Scenario (Pre-conditions)   

• Run DDoS attack with Mira Botnet. 

• Build a knowledge base of prior experiences in attack detection 

to be able to predict the NIDS configuration. 

• Train and configure the NIDS offline and test it online. 

• Comparison to state-of-the-art techniques such as black box 

optimization solutions.  

• Comparison of the proposed solution with public dataset and 

testbench data from the Mirai botnet. 

Expected Results (Post-

Conditions) 

• Metrics: time, memory, accuracy (different machine learning 

metrics), gain compared to traditional machine learning 

configuration approaches. 

• Accuracy > 97% and time delay in a few ms for inferring a 

configuration and for detecting an attack. 

• Qualitative description of degradation of service for 5G services 

and AGV.  

General Time Plan (Validation 

Campaigns) 
• Q4 of 2023 

Test Sequence  

• Generate a labeled intrusion detection dataset (IDD). 

• Build a meta-dataset from the IDD to infer a new configuration 

of the NIDS for an unseen dataset. 

• Train on CIC IDS19 Dataset and reconfigure for collected attack 

traces 

4.3.2 Test case 2 – Intrusion Detection for Unknown Attacks 

Test case 2 Intrusion Detection for Unknown Attacks 

Slogan & Objective          
• Detect state-of-the art attacks that were unknown the time they 

happened without ad-hoc configuration of the attack profiles. 

Test Scenario (Pre-conditions) 
• Classify network traffic and compare anomaly score to baseline 

from literature of Split & Merge algorithm 

Expected Results (Post-

Conditions) 

• Qualitative description and comparison to other literature 

• Accuracy not possible to measure because real world data is not 

labeled. 

General Time Plan (Validation 

Campaigns) 
• Q4 2023 

 

 

 

 
19 Available at: https://www.unb.ca/cic/datasets/index.html  

https://www.unb.ca/cic/datasets/index.html
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Test Sequence  

• Verify that the Split & Merge Aggregator is able to detect the 

attack and the spreading botnet, even before the attack takes 

place, and mitigate both threats by changing the routing rules of 

the NetFPGA SmartNICs. 

4.3.3 Test case 3 – Anomaly Detection 

Test case 3: Anomaly Detection 

Slogan & Objective          
• Detect and characterize anomalous conditions generated by 

arbitrary events such as attacks, failures, misconfigurations. 

Test Scenario (Pre-conditions) 

• Inject anomalies in the infrastructure stack such as CPU 

overload, packet loss, link failures, attacks (both known and 

unknown from test cases 1 and 2). 

• Compare with standard monitoring systems alerts. 

Expected Results (Post-

Conditions) 

• Visualization of anomalies by means of stack radiography. 

• Online characterization and root cause analysis of the anomalies. 

General Time Plan (Validation 

Campaigns) 
• Q4 of 2024 

Test Sequence  

• CPU overload injection. 

• Packet loss injection. 

• Link bandwidths decrease emulation. 

• Known attack emulation. 

• Unknown attack emulation. 

• Link failure emulation. 

 

4.3.4 Test case 4 – 5G Connectivity and Local Traffic Breakout 

Phase 1: Connection between gNB and 5GC 

Test case 4.1: 5G Connectivity and Local Traffic Breakout 

Slogan & Objective          • Interface setup between gNB and 5GC. 

Test Scenario (Pre-conditions) 

• 5GC instance (remote control plane and edge user plane) 

running on servers or VMs. 

• 5GC configured with active license and running, gNB should 

be reachable through the network. 

Expected Results (Post-

Conditions) 
• No connection errors. Log messages show gNB successfully 

attached to the AMF. 

General Time Plan (Validation 

Campaigns) 
• Q2 of 2023. 

Test Sequence  
• Configure the network interfaces and the CP, including all the 

related NFs. The system should show settings confirmation. 



 D5.3 Use cases integration, validation, and benchmarking  

 

AI@EDGE (H2020-ICT-52-2020)  47 

• Set the IP address of the gNB in the whitelist of the 5GC’s web 

interface. 

• Configure the N2 interface for interconnection between AMF 

and gNB. 

• Connect the gNB to the 5GC (AMF). 

 

Phase 2: UE’s attach to and detach from the 5G network 

Test case 4.2: 5G Connectivity and Local Traffic Breakout 

Slogan & Objective          
• Check if UEs successfully attach to and detach from the correct 

PLMN and S-NSSAI. 

Test Scenario (Pre-conditions) 

• 5GC (remote control plane and edge user plane) running on 

servers or VMs and connected to a gNB.  

• 5GC configured, gNB reachable and interconnected to the 5GC 

AMF. 

• UE connected to the same gNB. UE must be pre-provisioned 

into the 5GC. 

Expected Results (Post-

Conditions) 
• Log messages show UE successfully registered, attached and 

detached to the 5GC. 

General Time Plan (Validation 

Campaigns) 
• Q2 2023. 

Test Sequence  

• Configure the UE (virtual or physical) with the correct settings 

of PLMN, S-NSSAI and DNN. The system should show 

settings confirmation. 

• Register through the GUI the UE into the 5GC with SUPI 

identity. 

• Review the 5GC log messages related to the UE attachment. 

Verify that no error occurred. 

• Detach the UE from the 5GC. 

 

Phase 3: Connectivity between UE and data network (DN) 

Test case 4.3: 5G Connectivity and Local Traffic Breakout 

Slogan & Objective          
• Check uplink/downlink traffic between UE and DN through the 

5GC (UPF), demonstrating the end-to-end connectivity 

between the connected devices and the edge servers. 

Test Scenario (Pre-conditions) 

• 5GC (remote control plane and edge user plane) running on 

servers or VMs and connected to a gNB.  

• 5GC configured, gNB reachable and interconnected to the 5GC 

AMF.  

• UE connected to the same gNB. UE must be pre-provisioned 

into the 5GC and attached to the 5GC. 

Expected Results (Post-

Conditions) 

• Connectivity between UE and DN is operational. 

• iPerf shows uplink/downlink traffic. 
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• ICMP messages are acknowledged. 

General Time Plan (Validation 

Campaigns) 
• Q2 2023. 

Test Sequence  

• Establish a new PDU session. Log messages should show the 

successful creation of the UPF session. 

• Configure iPerf agents on the UE and in a reachable server of 

the DN. Verify that there are no registering errors. 

• Execute iPerf session or ping session. The test plan should start 

running. An iPerf or ping experiment will be started. 

• Review the 5GC log messages or check iPerf or ping results. 

There should be no errors, warning messages or dropped 

packets. 

 

4.4.  Validation results 

4.4.1 Test case 1 results – Intrusion Detection for Known Attacks 

In Test Case 1, we employed meta-learning for the auto-configuration of Network Intrusion Detection 

Systems (NIDS), with detailed methodology outlined in the deliverable D4.2 [5]. This section expands upon 

that foundation, presenting in-depth experiments and advanced results using the IDS201720 and IDS201821 

datasets. It's important to note that both datasets are segmented into daily intervals, each encompassing a 

distinct type of attack, spanning a total of 17 days. 

Figure 15 (an infinite value due to division by zero is marked as 100% on day 13) illustrates the daily 

performance variations of Meta-learning (MtL) in comparison to Hyperparameter Optimization (HPO). In 

this setup, the number of HPO iterations is capped at the time MtL takes to infer a configuration. 

Performance difference is quantified as (p(MtL) - p(HPO))/p(HPO). Generally, the performance variation 

is minor across most days. However, there are notable deviations: a decrease in precision by -10.89% on 

Day 8 and -28.05% on Day 9. Conversely, MtL and HPO show similar precision, as HPO iterates further 

to optimize the Matthews Correlation Coefficient (MCC). Notably, the applied HPO technique is not multi-

objective, leading to a sacrifice in precision to enhance MCC. On Day 3, MtL improves Recall by 8.57% 

and MCC by 4.19%. On the 13th day, HPO's precision at the 7th iteration is nearly zero, whereas MtL 

achieves a precision close to 1. 

Memory usage also varies significantly. Implementing the HPO solution necessitates using the complete 

daily dataset from IDS2017 and IDS2018. The memory footprint ranged from a low of 18.79 MB on Day 

11 to a high of 837.33 MB on Day 4. MtL, which relies solely on meta-features, consistently requires less 

than 36KB of memory for each day. 

 

 

 

 
20 Available at: https://www.unb.ca/cic/datasets/ids-2017.html  
21 Available at: https://www.unb.ca/cic/datasets/ids-2018.html  

https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2018.html
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Figure 15 Relative performance of MtL calculated as a ratio between (MtL-HPO) and HPO 

Meta-learning hinges on having a representative meta-dataset. Previously, our studies used 16 days of data, 

with each day varying in network context and attack type. In this analysis, however, we explore scenarios 

with fewer days to construct the meta-dataset, thus limiting prior experience. We predict configurations for 

days not included in each subset of days. For instance, with a 2-day meta-dataset, there are 136 

combinations affecting the other 15 days, leading to 2040 unique configurations, as shown in Figure 16. 

Results indicate that using more days generally improves NIDS performance, but the performance 

difference between closely numbered days (like 3 and 4, or 14 and 15) is negligible. Performance starts to 

stabilize with 8 days, achieving similar outcomes to using 12, 14, or 15 days. This finding suggests the 

feasibility of limiting computational resources during meta-modeling by using a smaller meta-dataset. 

Consequently, building the meta-target vector would require fewer iterations (2400 instead of 4800) for 

comparable MtL performance. 

 

Figure 16 NDIS performance 

4.4.2 Test case 2 results – Intrusion Detection for Unknown Attacks 

In this test case, NetFPGAs for botnet detection were employed. The early detection of DDoS attacks is a 

serious concern for the reliable and secure operation of IoT networks. Since botnets can prepare such attacks 
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in a stealthy manner, measures have to be found that enable continuous network monitoring and anomaly 

detection. 

Due to the nature of typical botnet behaviour, an IDS optimized for the detection of stealthy botnet activity 

should leverage port-based analysis as a first step. Consequently, changes in network behaviour can be 

tracked in long-term profiles, which allows for a wide view of the network in which systemic anomalies 

can be distinguished from local fluctuations. This can be achieved by employing an original implementation 

of the SPLIT-AND-MERGE anomaly detection algorithm, which enables Collaborative IDS (CIDS). 

As a reference architecture, this test case employs a software defined network (SDN), in which the data 

plane consists of FPGAs, which can handle network monitoring and switching decisions. The data plane 

communicates with the control plane, which establishes the routing rules, via a Southbound Interface (SBI). 

In combination, this setup allows the FPGAs to process packets on a device-level, with distributed units 

collaborating by communicating collected metrics to a central aggregator, which performs local anomaly 

detection as well as network-level monitoring and alerts. The issue of memory bottlenecks is mitigated by 

using data sketches via HYPERLOG. 

One major advantage of this setup is that it not only allows the early detection of botnet activity, but also 

basic mitigation actions, such as redirecting traffic, blocking ports and allowing or disallowing specific IPs. 

The solution was evaluated by testing it against the MAWI22 Archive dataset, where it showed promising 

performance in detecting networks anomalies, while keeping false alarms at a manageable level. Further 

research should concentrate on enabling the monitoring of several ports at the same time, to maximize 

monitoring coverage. 

 

 

 

 

 
22 Please see: http://faculty.nps.edu/cabollma/MAWI_Datasets/Datasets.html  

http://faculty.nps.edu/cabollma/MAWI_Datasets/Datasets.html
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Figure 17 Anomaly Scores for the 2016 period 

MAWI traces are split into nine subtraces, according to the respective subnetwork prefixes. Each subtrace 

is then submitted to a NetFPGA smart switch to be analysed and related per-port SPLIT-AND-MERGE 

metrics - namely, dst/src IP address cardinality, source port cardinality, packet count, SYN count, packet 

size meant/variance – are obtained. Applying SPLIT-AND-MERGE algorithm to obtained data returns a 

certain Anomaly Score (AS) for a given TCP port at a given time, providing a network administrator with 

an insight on which ports may be misbehaving at a given time. 

Figure 17 shows the AS obtained for the dataset considered. Given the unlabelled nature of the archive, 

relevant anomalies (with AS greater than 15) have been individually investigated. As a result, the proposed 

CIDS provides a convenient number of alerts per day (i.e., 1 relevant alert per day on average), of which 

approximately 30% are false positives. Among the detected anomalies, we highlight some related to 

vulnerabilities that were discovered few months or even few weeks before the detection, such as the Redis 

scan on port 6379 (June 30 – AS 20), two potential intrusion attempts towards Squid servers on port 3128 

(Aug 18 – AS 21 and Sep 1 – AS 21), a Denial-of-Service attempt on Privoxy (Aug 18 – AS 16). Also, we 

highlight some well-known botnets for which we detected scanning activity, such as Mirai on port 23 (Aug 

4 – AS 28), ADB.Miner on port 5555 (Dec 1 – AS 17) and Cyclops Blink on port 995 (Jul 7 – AS 15). 

4.4.3 Test case 3 results – Anomaly Detection 

With the anomaly detection AIF based on federated learning, a framework for anomaly detection for 5G 

and beyond (xG) infrastructures, was developed (Figure 18). Since labelling anomalies in complex and 

dynamic networks is a major issue, autoencoders have been employed, as they don’t require labelling. To 

that end, the Long-Short-Term Memory (LSTM) approach has been leveraged for time-series analysis. 

Since centralized learning is ill suited for complex networks like 5G and beyond, due to privacy and security 

issues as well as communication overhead, a federated learning (FL) approach has been used, in which all 

device data is stored and processed locally, with only the model parameters aggregated to a central node. 

Thus, global models can be trained locally, in a collective manner. This approach not only solves the 
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problem of prohibitively long training times in centralized learning for complex networks, it is also uniquely 

suited for the monitoring of xG networks due to the fact that mobile edge computing platforms contain 

enough storage and processing power for machine learning. 

 

 

Figure 18 Framework for anomaly detection 

For the evaluation of the framework, a training dataset was produced using the 5G End-to-End Emulation 

(5G3E23) platform, on normal conditions. This enables the necessary error reconstruction by identifying 

deviation from nominal conditions. In a second step, a threshold was defined at which events are indicated 

as anomalous behaviour. The test dataset was then created by injecting various anomalies:  

• CPU overload injection: CPU overload was tested by stressing the physical CPU at 80% nominal 

capacity. This tests how well the autoencoders that are distributed across multiple nodes can 

perceive such stress. The recall which is sensitive to the anomalies that are correctly identified, 

varies between 0.78 to 0.9. It is approximately 8% less compared to SYRROCA[6] in the worst-

case scenario, which is when the number of clients is two. For the precision, the difference is less 

than 0.5% which is not a severe deviation. F1-score has a similar behaviour as well. 

 

 

 

 
23 Please see: https://hal.science/hal-03698732v2  

https://hal.science/hal-03698732v2
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• Link bandwidth decrease emulation: access bandwidth bottleneck was simulated by increasing 

network traffic up to 15 times of its normal values. This is to preserve the effect of the change in 

bandwidth on the underlying infrastructure resources and how the anomaly detection framework 

will capture this change. The framework shows a rather large gap in recall with respect to 

SYRROCA, with a deviation of approximately 20%. But for the other metrics that performance is 

closer or in some cases better. 

• Packet loss injection: the handling of packet loss was tested by randomly dropping up to 80% of 

packets. This shows similar behaviour to the scenario of CPU overload injection. The deviations 

from the anomaly detectin framework to SYRROCA are less than 10% at its worst case and the 

precision is very similar, whereas the F1-score is very close. 

The results (Figure 19) show that under the various stress test conditions, the federated learning anomaly 

detection framework showed performance almost on par with centralized approaches, while requiring a 

massively shorter training time, thus enabling the fulfilment of carrier-grade requirements for post-incident 

service restoration as well as impairment prediction, which facilitates mitigation of reliability threats. 

 

 

Figure 19 Anomaly Detection AIF (FLADxG) vs baseline SYRROCA comparison in terms of F1 score  
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4.4.4 Test case 4 results – 5G Connectivity and Local Traffic Breakout 

Test Case #4.1: Connection between gNB and 5GC 

No connection errors. Log messages show gNB successfully attached to the AMF. Control plane messages 

between the RAN and the 5GC are correctly exchanged. 

 

Test Case #4.2: UE’s attach to and detach from the 5G network 

Log messages show UE successfully registered, attached, and detached to the 5GC. 

 

Test Case #4.3: Connectivity between UE and data network (DN) 

• Connectivity between UE and DN is operational. 

• iPerf shows uplink/downlink traffic. 

• ICMP messages are acknowledged. 

• Data throughput using a Quectel RM500Q-GL (Over USB 3.0 carrier board with 30 Mhz 

Bandwidth): 

o Download: avg 70 Mbit/s (min 60 Mbit/s max 100 Mbit/s). 

o Upload: avg 100 Mbit/s (min 95 Mbit/s, max 110 Mbit/s). 

• Data throughput using using a Samsung Galaxy S21: 

o Download: max 190 Mbit/s (30 Mhz Bandwidth), min 180 MBits/s AVG 200 Mbit/s max 

240 Mbit/s (40 Mhz Bandwidth). 

o Upload: max 100 Mbit/s (30 Mhz Bandwidth), max 120 Mbit/s (40 Mhz Bandwidth). 

 

4.5.  Final remarks 

In this use case the focus was on the security of interconnected devices in a smart factory environment. A 

5G testbed was set up and three different security solutions were developed and validated in the scope of 

UC2. The validation scenario was a factory floor with AGVs controlled over the edge. The potential damage 

could be a production outage or even physical harm to the factory workers. The AI@EDGE platform allows 

for AIFs to be deployed and supports data pipelines to provide the data. The KPIs defined at the beginning 

of the project have been expanded by additional evaluation metrics to have more comprehensive results. 

Nonetheless, the presented validation methods present first positive results, there are still gaps to be filled 

with regards to attack and failure detection. Especially for unknown attack or for changing attack patterns 

it is a difficult to create sufficiently broad and labelled datasets. Although the presented auto-configuration 

of hyper parameters is trying to address the problem of small training sets, the problem of small test sets 

remains. 
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5. Use Case 3: Edge AI assisted drones in beyond-visual-line-of-sight 

operations 

The primary purpose of UC3 is to monitor extensive road networks using drones in BVLOS (Beyond Visual 

Line of Sight) mode, enhanced by the 5G network. In this scenario, reliability and seamless data traffic are 

required to transmit telemetry, images, and videos with minimal delay to the operator and central office for 

decision-making process. 

The monitoring application entails the use of advanced functionalities such as scanning, 3D modelling of 

infrastructures, incident identification, and notifying the drone operator. Due to the inherent constraints of 

drone performance, including weight, energy consumption, and other factors, it becomes imperative to 

minimize onboard systems. Thus, it becomes necessary to offload as many processes as possible from the 

drone. 

By leveraging UC3's operations on the AI@EDGE platform and its MEC systems based on AI and Edge 

Computing supported by 5G networks, the optimal monitoring support is achieved, accelerating 

computational and modelling processes, improving reliability, and extending the operational range. In the 

context of this use case, two AIFs were developed and tested on the integrated AI@EDGE platform: the 

“Anomaly Detection” AIF and the “3D Reconstruction” AIF. 

5.1.  Validation objectives 

The validation scenario of UC3 has been established based on achieving, first, an adequate integration 

scheme for the testbed that includes the three development areas identified and defined in D5.1, [1], as the 

DEVELOPMENT ENVIRONMENTS: 5G NETWORK, DRONE, and AI FUNCTIONS, as well as the 

integration of MEC functions of the AI@EDGE platform in the testbed for the operation of the integrated 

system. 

Therefore, the validation objectives are related to demonstrate firstly that an integrated framework has been 

achieved by connecting the Drone and the AI Function Environments within the 5TONIC24 5G Network 

and checking that it is working successfully with the required dataflow. 

And once this first stage is achieved, it is required to design specific test cases to provide a proof of the 

successful integration as well as a reference dataset to demonstrate that the KPIs for the UC have been 

reached. The KPIs defined as follows: 

• For the drone operation:  

o the latency KPI, composed of two components: Control Signal latency (below 50 ms) and 

Video processing latency (100 ms); 

o the reliability KPI (tentative metric) in terms of control signal packet loss (below 1%); 

 

 

 

 
24 Please see: https://www.5tonic.org/  

https://www.5tonic.org/
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o the range of operation to be at least 20 km. 

• For the Anomaly Detection AIF, the KPI is the Mean Average Precision (mAP) with an Intersection 

over Union (IoU) equal to 0.5. This target KPI for the AI@EDGE project, according to the dataset 

used for the project, will be mAP@.5 >= 0.6 (defining classes as identifiable items such as 

“persons” or “vehicles”) - mAP@.5 refers to the mean average precision at an intersection over 

union value of 0.5. 

5.2.  Validation scenario 

This scenario, outlined in the previous section to facilitate the achievement of established validation 

objectives, is explained in detail below. It is realized through the coordinated efforts of the different partners 

participating in the use case. On one hand, 5TONIC - Ericsson deploys the necessary devices to emulate 

the working environment (drone + central office + drone operator) and to establish drone control 

communication (C2) and video transmission from the drone, utilizing the communication network currently 

operational in 5TONIC (4G, 5G NSA, etc.). Meanwhile, AERO provides integrated systems onboard the 

drone that connect the three development nodes (AERO in Madrid, ATOS in Zaragoza, and 5TONIC), 

enabling continuous and efficient development to meet the objectives. Lastly, ATOS develops the AI 

functions and is responsible for their deployment and integration into the workflow." 

The 5G NETWORK environment is built on top of 5TONIC laboratory. To connect the other 

environments, dedicated VPNs have been set and tested for correct functioning to provide visibility and 

connectivity to all the systems involved, as depicted in Figure 20. 

  

 

Figure 20 VPN connection for UC3 development process 
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The VPN deployed at 5TONIC laboratory provides the required connecting among the development 

environments involved in the UC3, as depicted in Figure 21. 

  

 

Figure 21 5TONIC VPN connecting UC3 development environments 

The DRONE environment provides an AT6 drone, a prototype flying platform with specific equipment 

and integrated systems (Navigation, C2, payload, data transfer) and computing devices such as a Raspberry 

PI25, as well as stereoscopic cameras in dedicated stabilized gimbal to provide high quality footage and a 

First Person View (FPV) camera to support drone´s operations when required by the operator.  

 

 

Figure 22 UC3 Drone Environment - AT6 drone with integrated devices 

Figure 23 shows the devices onboard the drone and the connections among them. 

 

 

 

 
25 Please see: https://www.raspberrypi.com/   

https://www.raspberrypi.com/
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Figure 23 UC3 Drone Environment devices and connections 

  

As shown in the figure, the Raspberry PI, labelled as CPU-GPU device, is connected to the following 

devices: 

• Pixhawk Cube26 (Flight Controller) using 2 serial ports: 

o Serial1: to be used by drone operator ground station (based on Mission Planner software). 

o Serial2:  to be used by the Raspberry PI to read GPS and orientation data. 

• CAM1: to be used by Raspberry PI to stream the FPV to drone operator ground station. 

• CAM2-3: to be used by Raspberry PI to push the images to the content broker. 

And the dataflow designed for the integrated system is as follows: 

• Pixhawk Serial1:  

o Shared by Raspberry PI. 

o Mission Planner will use it in transparent mode, so will choose the IP/port to connect 

directly. This port is bidirectional so drone operator ground station can interact with the 

Pixhawk using MAVLink27. 

• Pixhawk Serial2:  

 

 

 

 
26 Please see: https://www.cubepilot.com/   
27 Please see: https://mavlink.io/  

https://www.cubepilot.com/
https://mavlink.io/


 D5.3 Use cases integration, validation, and benchmarking  

 

AI@EDGE (H2020-ICT-52-2020)  59 

o Raspberry PI is reading GPS information and orientation + inertial data, using MAVLink 

translator. This port is a one-way port, so it will only read from Pixhawk.   

• CAM1 - FPV:  

o This video source needs to be streamed to drone operator ground station   to be used as 

FPV (first person view). 

o Raspberry PI is streaming it to drone operator ground station directly. 

• CAM2 – CAM3:  

o This stereo CAM generates two video streams. Raspberry PI is reading both in addition to 

position information from Pixhawk Serial 2.  These images and the position information is 

packed and sent to content broker (RabbitMQ) 

o RabbitMQ stores CAM2/3 and positions information and serves to the consumer: Video 

3D scan and Video detector. 

The AI TOOL environment for running the automated incidents detection tool is completing the testbed 

for UC3, developing several modules and functions based on Artificial Intelligence. In the context of this 

UC two AIF have developed and tested: Anomaly Detection AIF and 3D Reconstruction AIF. 

 

Anomaly Detection AIF.  This artificial intelligence function is designed to detect anomalies in the videos 

captured by the drone and pinpoint their locations. Within the context of UC3, which focuses on the 

inspection of critical infrastructure, this AI function analyzes data transmitted by the drone. Upon detecting 

an anomaly, it promptly sends notifications and supporting evidence to the pilot. Subsequently, the pilot 

can initiate the process of generating a 3D model of the incident scene for future evaluation using the 3D 

Reconstruction AIF. The implementation of this task entails configuring multiple components to preprocess 

the inputs and forward them appropriately to the AI function for analysis. These components are: 

• On-board Data Server: This component access to the cameras stream installed aboard the drone 

and the telemetry data bus (in MAVLink format). It has a double function: to synchronise all data, 

since each telemetry data message and the cameras transmit at different frequencies and to emit 

this synchronised data at the selected frequency, in json format through RabbitMQ broker, feeding 

the AI function. This level of synchronism in the transmission of telemetry data and images is 

important for the proper functioning of anomaly detection AIF but it is fundamental in 3D 

reconstruction as we must ensure that the images sent and the position and orientation (GPS and 

Euler angles) of the cameras always correspond to the same instant of time. 

• RabbitMQ server: The technology chosen to act as a messaging broker between the drone, the 

pilot and the different AIFs is RabbitMQ as it covers the following requirements: 

o It is fast enough, and it works with good metrics/monitoring. 

o Use standard protocols, publish/subscribe, request/response etc. 

o Completeness of messaging patterns. 
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o Scales to 1 million messages per second. 

o Distributed. 

o JSON28 compliance. 

o This component works bidirectionally, it is the channel for sending configuration 

commands to the data server and events and notifications to the pilot and input data to the 

AIFs.   

This AIF, responsible for anomaly detection and localization in video streams (Figure 24), use DETIC29 as 

main detector and CLIP30 as visual-language model. For the scope of this project, the use of CLIP has been 

focused on two anomalies, persons, and cars, for the description of elements. So, the AIF is automatically 

fed with these descriptions and when detecting an anomaly, an event will be sent to the pilot through the 

message broker to trigger an order to initiate a 3D reconstruction if this is considered necessary.  

 

 

Figure 24 UC3 Anomaly Detection AIF on operation at 5G Environment in 5TONIC 

3D Reconstruction AIF: This artificial intelligence function is responsible for creating a 3D model of the 

area where an anomaly has been detected (Figure 25). When the pilot receives a detection event notification 

from the Anomaly Detection AIF and deems it appropriate, they may initiate a circular flight (Point of 

Interest - POI) around the location of the detected anomaly. Simultaneously, the pilot sends a request for 

video and telemetry acquisition to the onboard Data Server via RabbitMQ. The Data Server then begins 

 

 

 

 
28 Details at: https://www.json.org/  
29 Please see: https://github.com/facebookresearch/Detic  
30 Please see: https://github.com/openai/CLIP  

https://www.json.org/
https://github.com/facebookresearch/Detic
https://github.com/openai/CLIP
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transmitting the required data to the 3D Reconstruction AIF, initiating the 3D reconstruction process. The 

components have the following function: 

• On-board Data Server: Same functionality as in the previous AIF. 

• RabbitMQ server: Same functionality as in the previous AIF. 

• Inertial Odometry & fast 3D model generator: The 3D Reconstruction AIF needs images from 

the scene in different orientations to achieve a photorealistic result. The quality and the proper 

orientation of the images is the most important step in the process. Once the pilot sends the order 

to get the 3D model, the drone starts to fly around the area taking images and gathering the extrinsic 

parameters of the camera (position and orientation) in every instant of time. This component will 

perform a coarse reconstruction in real time aboard the drone, giving real time feedback to the pilot 

about the acquisition process. This allows the pilot to know whether the acquired data is enough, 

or it is necessary to continue with the flight, to get more images. Once the module identifies that 

the requirements of number and quality of images acquired are met, it will send a notification to 

the system and the 3D modelling will be initiated by the AIF. 

 

 

Figure 25 UC3 3D Reconstruction AIF on operation at 5G Environment in 5TONIC  
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5.3.  Validation procedures   

For the validation process, it is necessary to specify the procedures to follow, which are structured around 

the Test Cases that have been developed for each of the KPIs to be verified, providing the framework to 

measure and record the required parameters to validate defined KPIs for this UC3. 

The number of Test Cases defined are five, adapted to the goals set for the UC: 

1. Integration of all systems in the defined environments and demonstrate visibility, connectivity among 

all of them and correct operation.  

2. Operation of integrated systems with additional measuring elements to test latency.  

3. Operation of integrated systems with additional measuring elements to test reliability. 

4. Operation of integrated systems with additional measuring elements to test range.   

5. Deployment of Anomaly Detection AIF to measure average precision values to compare with a 

reference dataset. 

The detailed description and sequence of actions for each Test Case are explained in the following tables. 

5.3.1 Test case 1 – Integration 

Test Case #1 

 Integration 

Slogan & Objective Testing integration and connectivity among all systems 

Test Scenario  

(Pre-conditions) 
Designed set-up for development 

Expected Results  

(Post-conditions) 
All systems connected and sending/receiving data 

General Time Plan 

(Validation Campaigns) 

Final architecture tested as planned and achieved objective 

by Q3 2023. Testing throughout Q3-Q4 2022 

Test Sequence 

• Deployment of drone and AIFs in 5G Network 

Environment. 

• Connection of systems to VPN, checking visibility. 

• Start of operation with Drone take off and image 

shooting. 

• Request of AIFs 
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5.3.2 Test case 2 – Latency 

Test Case   #2 

  Latency 

Slogan & Objective 
Testing of communication latency for drone control and video 

transfer. 

Test Scenario  

(Pre-conditions) 

Integrated set-up developed plus measurement tools (iPerf, 

Zabbix31, Grafana32) 

Expected Results  

(Post-conditions) 

C2 latency ≤ 50 ms  

• (Drone to/from Operator PC/Ground Control Station) 

Video latency ≤ 100 ms  

• (Drone to/from Operator PC) 

General Time Plan 

(Validation Campaigns)  
Testing carried out throughout Q3-Q4 2023. 

Test Sequence   

• Deployment of Drone and AIFs in 5G Network 

Environment. 

• Connection of systems and preliminary communication 

test with iPerf. 

• Start of operation: Drone take off & delivery of C2&Video 

signals. 

• Monitoring, measuring & recording ping signals (Zabbix 

and Grafana) 

5.3.3 Test case 3 – Reliability 

Test Case  #3 

  Reliability 

Slogan & Objective Testing of reliability on C2 signals. 

Test Scenario  

(Pre-conditions) 

Integrated set-up developed plus measurement tools 

(Proprietary SW tool similar to iPerf, Zabbix, Grafana) 

Expected Results  

(Post-conditions) 

C2 signal packet loss ≤ 1%. 

• (Drone to/from Operator PC/Ground Control Station) 

General Time Plan  

(Validation Campaigns) 
Testing carried out throughout Q3-Q4 2023. 

Test Sequence • Deployment of Drone in 5G Network Environment. 

 

 

 

 
31 Please see: https://www.zabbix.com/  
32 Please see: https://grafana.com/  

https://www.zabbix.com/
https://grafana.com/
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• Connection of systems and preliminary communication 

test with proprietary SW tool (similar to iPerf) that allows 

measuring E2E testing. 

• Start of operation: Drone take off & delivery of C2 signals. 

• Monitoring, measuring & recording C2 signal to/from 

Raspberry PI from/to Operator PC 

5.3.4 Test case 4 – Range 

Test Case #4 

   Range 

Slogan & Objective Testing of operational range in 5G Network.  

Test Scenario  

(Pre-conditions) 

Drone operating at 5TONIC spot located more than 20 km 

from Aerotools´ Office where the pilot is controlling the drone. 

Expected Results  

(Post-conditions) 

Drone operator will manage Drone´s C2 & Video signals from 

the Aerotools´ Office while requesting AIFs deployed in the 

5TONIC Testbed. 

General Time Plan  

(Validation Campaigns)  
Testing carried out throughout Q3-Q4 2023. 

Test Sequence 

• Deployment of drone and AIFs in 5G Network 

Environment. 

• Connection of systems to VPN, checking visibility. 

• Start of operation with Drone take off and image shooting. 

• Request of AIFs 

 

The location of test sites for this Range Test Case is shown in Figure 26. 

 

 

Figure 26 Location of test sites for the Range test  
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5.3.5 Test case 5 – AIF Precision 

Test Case # 5 

 Main Average AIF Precision 

Slogan & Objective 
Testing of Anomaly Detection AIF Precision in detecting the 

defined elements of an image. 

Test Scenario  

(Pre-conditions) 

Anomaly Detection Function running and tested, using 

images provided by developed set-up (drone at 5TONIC 

testbed) 

Expected Results  

(Post-conditions) 

Mean Average Precision (mAP) with Intersection over Union 

of 0.5, not lower than 0,6 

General Time Plan 

(Validation Campaigns) 

Generation of a reference DATASET and testing carried out 

throughout Q3-Q4 2023. 

Test Sequence 

• Deployment of drone and AIF in 5G Network 

Environment. 

• Request of Anomaly Detection Function. 

• Running the reference DATASET. 

• Measure of results. 

For the validation of this KPI, the developed Anomaly Detection Function requires a reference DATASET 

that is used as a benchmark to measure the results obtained in detecting the characterized elements that are 

of interest for this Use Case. The reference DATASET is generated using images generated by the drone. 

 

5.4.  Validation Results 

Once the scenario and procedures for conducting tests in each of the test cases were defined, various work 

sessions were carried out to verify the operation of the integrated systems under the established conditions 

and to measure parameters that provide objective evidence of the degree of compliance with the KPIs. 

In addition to a series of partial test sessions, complete validation sessions were held on the dates 14/09/23, 

22/09/23, and 05/10/23. 

5.4.1 Test case 1 results – Integration 

The integration of all systems, as detailed in previous sections, has been successfully completed, and the 

entire system has consistently operated under the specified conditions since M29 of the project. 

The functional diagram that explains the architecture of the entire system is the one defined for Use Case 3 

during the project, that is depicted in Figure 27. 
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Figure 27 UC3 architecture diagram 

 

Figure 28 shows the external 5TONIC facilities used for the drone’s operations. 
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Figure 28 Drone operating at 5TONIC facilities 

For the effective management of integrated systems, a Graphic User Interface (GUI) has been developed 

and fine-tuned to meet the specific requirements of this operation. A brief description of the included 

elements and functionalities is provided below. 

 

GUI (Graphic user Interface) 

All the communication from the user interface to the drone and to the AIFs is done through the Kubernetes 

cluster. The orders are sent from the interface to the MEO in the AI@EDGE Platform to open the docker, 

which is the AIF container, and it executes it with the parameters included in the descriptor´s file. Figure 

29 shows the main page of the GUI. 
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Figure 29 Main page of the AI@EDGE UC3 GUI 

This web application provides the operator with a direct and simple resource to interact with all the 

components of the integrated system. The address is http://10.75.1.40:5000 at AI@EDGE VPN.  

The Main page of the GUI encompasses the following elements: 

Video screens 

 

FPV images 

These images are received in the GS 

through the input-video-queue-gs queue 

from the UAV. Subsequently, they are 

transmitted to the client browser (the 

Ground Station, or any supervising 

operator’s computer) using Server-Sent 

Events (SSE). 

http://10.75.1.40:5000/


 D5.3 Use cases integration, validation, and benchmarking  

 

AI@EDGE (H2020-ICT-52-2020)  69 

 

 

 

Annotated USB camera video from 

the AIF surveillance 

These images are received in the GS via 

the output-video-queue from 

AIFreconstruction. Afterward, they are 

sent to the client browser through 

Server-Sent Events (SSE). 
 

 

 
 

 

 

 

Information Display 

This section serves as a black box, 

emulating a terminal, and provides 

valuable information about the system's 

state. It includes details about: 

• Errors 

• Any errors within the system are 

prominently displayed in red. 

• RabbitMQ queues 

• This section displays both the 

queues that the Ground Station is 

awaiting information from 

(Waiting Queues) and the queues 

from which the Ground Station is 

receiving information (Receiving 

Queues). 

• AIFreconstruction Feedback 

• Information about the actions 

being performed by the AIF 

reconstruction is displayed here. 

 

Map 

Shows the real-time position of the 

UAV on the map as well as the path it 

follows during its operation. The 

geoposition information is send by flight 

controller. Additionally, the map 

displays the location of accidents when 

they occur. The map functionality is 

powered by the Google Maps API. 
 

 

 

  

https://developers.google.com/maps
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Function Buttons 
 

 

 

Start UAV Initiates the UAV.py script on the UAV's on-board computer via an SSH GS-UAV 

connection. The UAV streams FPV video to the GS through the RabbitMQ queue 

input-video-queue-gs and directly to the pilot's computer via UDP sockets. In 

Surveillance mode, it streams USB camera video to AIFsurveillance through the 

input-video-queue-AIF queue. In Accident mode, it streams HD USB camera 

video to AIFreconstruction through the input-video-queue-HD queue. The UAV's 

pose is continually sent to the GS using the pose-UAV queue. 

Stop UAV 

 

Safely terminates the UAV.py script on the on-board computer. 

Start 

AIFsurveillance 

Deploys the Docker container for AIFsurveillance in the Kubernetes cluster. In 

Accident mode, it actively waits for images from the UAV. In Surveillance mode, 

it receives video sent by the UAV via the input-video-queue-AIF queue. The 

model generates panoptic segmentation masks, and annotated prediction images 

are streamed to the GS, along with accident notifications if detected, through the 

output-video-queue. Internally, the app connects to the cluster via SSH and 

executes the following command to deploy the Docker container: `kubectl scale 

deployment uc3-aif-anomaly-detection-deployment -n surveillance --

replicas=1´. 

Stop 

AIFsurveillance 

Safely ends the execution of AIFsurveillance in the cluster by stopping the 

container. It executes the following command in the cluster: `kubectl scale 

deployment uc3-aif-anomaly-detection-deployment -n surveillance --

replicas=0´. 

 

Start 

AIFreconstruction 

 

It deploys the Docker container of the AIFreconstruction in the Kubernetes’ 

cluster. In Surveillance mode, it actively waits for the images from the UAV. In 

Accident mode, this AIF receives the HD video sent by the UAV via the input-

video-queue-HD queue and computes the 3D reconstruction of the accident scene. 

During the reconstruction process, this AIF is sending feedback to the GS through 

the feedback-AIF-reconstruction queue, specifying which action it is performing 

then. If the reconstruction process fails, due to the appearance of too many blurry 

images or a bad on-flight record of the UAV, the error messages are also sent to 
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the GS. The images are anyway sent to the GS to be downloaded and processed 

offline by the operators before the AIF starts to reconstruct. If the reconstruction 

succeeds, the AIF will send the 3D model to the GS, along with the generated 

camera path. The app is executing the following command to deploy the docker 

container: kubectl scale deployment uc3-aif-3d-deployment -n 3d --replicas=1. 

Stop 

AIFreconstruction 

It safely ends the AIFreconstruction execution in the cluster by stopping the 

container, executing the following command in the cluster: kubectl scale 

deployment uc3-aif-anomaly-detection-deployment -n surveillance --replicas=0. 

Surveillance 

 

 

This is the default working mode, so the system starts in this mode without the 

need of clicking the corresponding button. Each element, when active, is 

performing the following actions: 

• UAV: Sends 640x480 USB camera images to the AIFsurveillance 

RabbitMQ queue input-video-queue-AIF. It also streams FPV video to the 

pilot and the GS, along with the pose to the GS. 

• AIF surveillance: Receives UAV video, performs predictions, and sends 

annotated images to the GS. 

• AIF reconstruction. Actively waits for UAV video.  

• Ground Station: Displays the UAV's position on the map, FPV images, 

annotated predictions from AIFsurveillance, and terminal information. 

Accident 

 

Activated by the pilot when an accident occurs. It switches to Accident mode, 

which affects each element of the system as follows: 

• UAV: Stops sending 640x480 USB camera images to AIFsurveillance and 

starts sending 1280x960 images to the AIF reconstruction queue input-

video-queue-HD. 

• AIF surveillance: Stops receiving images and, therefore, stops sending 

predictions to the Ground Station. 

• AIF reconstruction: Starts saving images, that will be used for the 3D 

reconstruction once the Accident mode stops (when the Surveillance button 

is clicked). 

• Ground Station: Displays the accident location on the map. Moreover, it 

stops showing the images of the AIF surveillance since they are not being 

generated. In the black terminal, it displays the feedback received by the AIF 

reconstruction in the RabbitMQ queue feedback-AIF-reconstruction. 
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Data Section 

This subpage of the application (Figure 30) provides operators an efficient means to visualize, generate, 

and download relevant data related to the system’s operation.  The address is http://10.75.1.40:5000/data  

 

 

Figure 30 Data Section page 

It includes the following elements: 

Graphical display 

Displays the real-time frequency at which streams arrive at the Ground Station server. These streams are 

the FPV images from the UAV, the UAV’s pose, and images with annotated predictions from the AIF 

surveillance. 

Buttons 

Download Plot  Allows users to download a snapshot of the graph. 

Download Logs  Downloads a text file containing stream frequency information since the 

launch of the Ground Station. 

Play  Initiates the recording of available streams displayed in the Ground Station. 

Stop  Halts the recording process. 

Save Videos  Downloads any available videos in the Ground Station. 

Download AIF 3D 

Images 

 Downloads the images used by the Nerf model to generate the 3D 

reconstruction. 

Download AIF 3D 

Camera Path 

 Downloads the camera path computed from the images using Colmap.  

Download INGP 3D 

model 

Downloads the trained Nerf model checkpoint, which can be used to visualize 

the 3D reconstruction using the instant-ngp software. 

Download OBJ 3D 

Model 

 Downloads the 3D model in OBJ format. 

 

http://10.75.1.40:5000/data
https://nvlabs.github.io/instant-ngp/assets/mueller2022instant.pdf
https://demuc.de/colmap/
https://github.com/NVlabs/instant-ngp
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5.4.2 Test case 2 results – Latency 

As previously detailed in the document, latency measurement is conducted in both the drone's command 

and control section and separately during the transfer of images generated by the drone. The subsequent 

paragraphs elaborate on the results obtained from these tests. 

Command & Control Communication 

To conduct performance measurement tests of the C2 signal between the drone and the operator, the drone 

is connected to the 5G network of 5TONIC, and signal control points are established between the devices 

indicated in Figure 31. 

 

 

Figure 31 Latency measurements for Control and Command 

At 5TONIC, Ericsson has developed a Key Performance Indicator (KPI) framework designed to efficiently 

gather and visualize metrics related to the utilization of the 5G System. This framework relies on a 

sophisticated software, named “probe”, a component adept at extracting metrics from end-user traffic with 

flow granularity for IP traffic. A flow is uniquely identified by a tuple consisting of the origin IP address, 

destination IP address, origin port, destination port, and type of protocol. This meticulous approach enables 

the extraction of KPIs specifically tied to application flows, providing valuable insights into the 

performance of individual applications within the 5G System. 

The software probe is installed in the Raspberry Pi onboard the drone, specifically configured to capture 

application traffic generated during drone operations on the 5G system network interface. This software 

probe can generate key metrics, including 'TCP Round-Trip and Throughput,' for both uplink and downlink. 

Additionally, metrics such as Jitter can be derived from the real-time database, housed in the 5TONIC Data 

Center, which is populated with data exposed by the software probe. The visualization of this data is 

facilitated through the Grafana application, an open-source solution designed for network monitoring, 

providing graphical representations of the stored metrics. 

The methodology for C2 Latency measurement revolves around the Round-Trip Time (RTT) of a PING, 

involving the sending of a PING from one end of the network and recording the complete duration for the 

request to traverse the network and the corresponding response to return. In this instance, a PING is initiated 
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from the Raspberry Pi device integrated into the drone, with the opposite end situated at the PC of the drone 

operator. 

RTT is recorded at varying intervals, ranging from 1 second to broader periods, to compile a comprehensive 

database of measurements, serving as evidential data. Grafana facilitates a graphical representation of the 

performance, illustrated in Figure 32, showcasing the RTT measurements at the Raspberry Pi. Additionally, 

the Jitter factor, a parameter reflective of deviation from the RTT value, is included to depict the stability 

of this metric. 

 

 

Figure 32 RTT performance 

The RTT value consistently remains below 100 ms, aligning with the definition of RTT as double the 

distance considered for Latency. This compliance with the 50 ms value serves as a confirmation of meeting 

the Key Performance Indicator (KPI) set for this parameter in the UC3. 

To provide additional validation and cross-reference the results obtained through the previously explained 

method, several test sets were carried out with 'direct communication,' meaning that the control station and 

the drone were connected via Ethernet cable, while simultaneously measuring the time difference between 

wired connectivity and connectivity using 5G technology. This confirmation test reinforced the previous 

results, confirming that the latency remains below 50 ms. In the graph below (Figure 33), the latency 

generated when utilizing a 5G network is depicted in comparison to the scenario where the operator's PC is 

directly connected to the drone controller. The graph illustrates consistent values below the threshold 

established by the Key Performance Indicator (KPI). 
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Figure 33 Latency introduced by the system in control and command communication 

Finally, flight tests conducted with the drone connected to the operator through the 5G network also 

confirmed the feasibility of conducting drone flight control over this 5G network infrastructure, as 

demonstrated in the video footage. 

Video Communication 

To monitor the system's video performance, a similar procedure is followed as explained in the previous 

paragraph regarding C2 communication. The testbed configuration for this process is depicted in Figure 34. 

 

 

Figure 34 Configuration for measuring Latency in video communication 

In this scenario, video images originate from two sources: 
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• Stereoscopic cameras generate video for the AIFs, which is transmitted by the Raspberry Pi to the 

RabbitMQ server deployed in the cloud. 

• FPV streaming, sent by the Raspberry Pi to the drone operator's PC. 

The latency of the video signal is monitored at the RabbitMQ server for the AIFs, and for the FPV video, 

the control point is established within the flying control software deployed on the operator's PC, known as 

Mission Planner. 

The procedure for measuring this parameter relies on the Round-Trip Time (RTT) of a PING sent from one 

end of the network, recording the total time it takes for the request to traverse the network and for the 

response to return. In this case, a PING is initiated from the Raspberry Pi device onboard the drone, with 

the opposite end directed towards both the RabbitMQ server and the drone operator's PC. 

(Note: It should be noted that this procedure enables measurement while other functions are concurrently 

running through the network. However, it holds the lowest hierarchical position, and additional latency 

could be introduced in specific conditions. Therefore, the measurements can be regarded as conservative.) 

RTT is recorded at intervals, ranging from 1 second to broader periods, to generate a database with 

measurements stored as evidence. Grafana graphics offer a graphical representation of the performance, as 

depicted in Figure 35, where RTT is measured at the RabbitMQ (along with the Jitter factor, a parameter 

representing deviation from the RTT value) for the video signal used in AIFs." 

 

 

Figure 35 RTT and Jitter video signal AIF 

And measured at the Mission Planner operator's PC (along with the Jitter factor) for the video signal used 

in FPV, as shown in Figure 36. 
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Figure 36 RTT and Jitter video signal FPV 

The RTT consistently remains below 200 ms, in accordance with the RTT definition as double the distance 

considered for latency. This compliance with the 100 ms threshold aligns with the Key Performance 

Indicator (KPI) set for this parameter in the UC3. 

5.4.2 Test case 3 results – Reliability 

The system's performance in “packet loss” is documented throughout the trials conducted at 5TONIC, as 

depicted in Figure 37. 

 

 

Figure 37 Packet Loss 

To assess the system's performance regarding data packet loss, the software Iperf is employed to conduct 

tests simulating the required data flow for the AIFs Video signal (20 Mbps). The tests involve sending a 
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data flow from the Raspberry Pi for 60 seconds and monitoring the reception of packets at the other end in 

the RabbitMQ server, where the video is managed. Figure 38 depicts the process of sending information 

and the results after monitoring, with the relevant information highlighted at each end. 

 

 

Figure 38 Sending information and monitoring results 

In the conducted tests, it was observed that reliability remains uncompromised when utilizing a 5G 

connection. Even in simulated scenarios intentionally introducing latency, connections remain stable with 

no dropped connections and no lost packets. In the absence of packet loss, it becomes the responsibility of 

the applications to uphold open sessions for each communication. The packet loss tests performed for the 

project were also replicated with scenarios simulating very high latencies, consistently yielding a 0% packet 

loss rate. 

5.4.3 Test case 4 results – Range 

A critical factor for the BVLOS mode is the distance at which the drone can be controlled by the operator. 

In the project, a significant distance of 20 km was established as KPI, a parameter that can introduce latency 

or other performance-degrading factors into the system. The tests conducted to showcase the requisite 

performance were tailored to the deployment of the 5G network and resources at 5TONIC. 

Figure 39 illustrates the adopted configuration and the locations of the two spots at each end: 

• The drone is flying and operating at the 5TONIC laboratory, situated in the IMDEA building in 

Leganes, southwest of the central area of Madrid. 

• The drone operator is located at the AEROTOOLS office in Alcobendas, north of the central area 

of Madrid. 

• The direct line distance from one spot to the other is more than 20 km. 
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Figure 39 BLVOS configuration 

The connection to the 5TONIC VPN is established through an Ethernet connection on the drone operator's 

side, while the drone is connected to the 5G network at 5TONIC. A BVLOS mode flight and drone 

operation was executed on October 5th, and the session was video recorded.  

Figure 40 present views from the operator's side as well as a third person view of both the drone and the 

operator. In addition, Figure 41 shows the GUI while controlling the drone in BVLOS mode. 
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Figure 40 Different views of drone and operator 

 

Figure 41 View of GUI controlling drone in BVLOS mode 

5.4.5 Test case 5 results – AIF Precision 

The performance of the Anomaly Detection AIF (AD AIF) is assessed in the test case 5 through an analysis 

of its capabilities in the domain of object detection. Our evaluation is based on an aerial dataset specifically 

generated within the testbed scenario and for relevant use-case situations. 

To create this dataset, several dedicated flying sessions have been conducted for aerial surveillance above 

nearby roadway featuring vehicular traffic and occasional pedestrian activity, capturing on-board video 
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footage. Subsequently, a process to select randomly up to 170 frames from the video is performed, and the 

frames are manually annotated according to the "car" and "person" categories. 

During the project, adapting configuration of the DETIC model [3] within the AD AIF was tailored to 

facilitate predictions for the two labelled classes. While DETIC demonstrates proficiency in panoptic 

segmentation, our focus remains solely on its object detection capabilities, deemed satisfactory and 

pertinent for our specific use case. A summary of the model's performance standard metrics on the resulting 

dataset can be found in Table 10. 

Table 10 DETIC model performance 

 Instances Precision Recall AP50 AP50-95 

all 684 0.939 0.896 0.946 0.657 

car 634 0.988 0.892 0.972 0.72 

person 50 0.89 0.9 0.919 0.595 

 

In this table: 

• The instances column refers to the number of objects of each class present in the dataset. Precision, 

recall, and Average Precision (AP) are fundamental evaluation metrics in object detection tasks 

that gauge the performance of detection models.  

• Precision refers to the ratio of correctly identified positive instances to the total instances predicted 

as positive by the model. It measures the accuracy of the model's positive predictions.  

• Recall, on the other hand, represents the ratio of correctly identified positive instances to the total 

actual positive instances present in the dataset, indicating the model's ability to detect all relevant 

instances.  

• Average Precision (AP) is a comprehensive metric that considers precision-recall pairs across 

various Intersection Over Unions (IoUs33). AP50 refers to the average precision computed for a 

single IoU threshold of 50%, while AP50:95 averages the AP over 10 IoUs, from 50% to 95%, 

with an increment of 5%.  The mean AP (mAP) is a metric used to measure the accuracy of object 

detectors over all classes in a specific database. The mAP is simply the average AP over all classes, 

that is: 

𝑚𝐴𝑃 =  
1

𝑁
∑

𝑁

𝑖=1

𝐴𝑃𝑖 

 

 

 

 
33 Please see: https://giou.stanford.edu/  

https://giou.stanford.edu/
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with 𝐴𝑃𝑖 being the 𝐴𝑃 in the 𝑖th class and 𝑁 is the total number of classes being evaluated. Typically, higher 

precision and recall values signify better model performance, while AP provides a comprehensive overview 

by considering precision across recall levels. In our case, 𝑁 = 2 for the ‘car’ and ‘person’ classes.  

Within this evaluation framework, the AD AIF Key Performance Indicator (KPI) was established as the 

Mean Average Precision (mAP) with an Intersection over Union (IoU) threshold of 50%, and it was 

required to exceed a threshold of 0.6. Precision and recall are both computed considering an IoU of 50% 

and establishing the confidence threshold of the model -detections with probability above this threshold are 

considered, otherwise not- to 44%. This parameter was experimentally set based on the best F1 Score in 

numerous experiments. Note that the obtained results significantly surpass the performance benchmark, as 

evidenced by the highlighted first value of the AP50 column in the former table, referring to the mAP in 

our evaluation dataset. The performance of the model diminishes when we consider more IoUs thresholds, 

as presented in the AP50-95 column of Table 10. Nevertheless, within our use case, this outcome holds 

secondary significance, as the primary objective lies in detection rather than precise localization of 

individuals and vehicles. An example prediction of the model with low IoU is presented in the bottom-right 

image of Figure 42. 

The disparity between the desired Key Performance Indicators (KPIs) and the obtained results can be 

attributed to various factors. These include: i) rapid advancements in state-of-the-art object detection, ii) 

the dataset's simplicity, which confines detection to two specific classes deemed sufficient and purposeful 

for the intended use case, and iii) the capture of UAV onboard images under favourable daylight conditions 

at a moderate altitude, facilitating object recognition within the images. 

Figure 42 illustrates the performance of the model -with the confidence threshold set to 44%- over the 

dataset. 
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Figure 42 Illustration of the DETIC model performance over images of the dataset 

The dashed boxes correspond to annotations and the solid ones to predictions. Top: Erroneous predictions. 

The top-left one shows a false negative occluded car (blue dashed box), and the top-right includes a false 

positive person (yellow box). Bottom: Correct predictions. The bottom-left image displays a full image of 

the dataset with all the objects properly detected, and the bottom-right one exemplifies a correct prediction 

with low IoU. And finally,  

Figure 43 shows the DETIC model performance over images of the dataset in the way are represented in 

the graphic user interface (with segmentation masks). 

 

 

Figure 43 Illustration of the DETIC model performance over images of the dataset 
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5.5.  Final remarks 

AI@EDGE represents a significant contribution to the advancement of BVLOS mode operations with 

drones in the industrial sector, spanning various applications such as infrastructure monitoring, surveillance 

of large areas, and inspection of substantial industrial assets. Ensuring a reliable network connection for 

communication is paramount for maintaining consistent operations in this mode. 

Beyond BVLOS, AI@EDGE introduces powerful tools to enhance drone performance and expand their 

utility. The ability to access a repository of on-demand AI functions, supported by computational resources, 

alleviates the need to burden drones with additional devices and systems, paving the way for innovative 

applications. 

In the realm of KPIs, achieving consistent performance of the assisted 5G network in various domains has 

been a primary concern. While the operational range is directly tied to network deployment, a well-defined 

and proven configuration to address different scenarios or available tools is essential. Moreover, ensuring 

low latency and high reliability is crucial, given the increasing demand for these parameters in drone 

operations. 

More specifically, the obtained results demonstrate: 

• Consolidated operation of drone systems in the 5G Network, including: 

• Command and control (C2) and First Person View (FPV) video signals for drone flight. 

• Payload video transfer. 

• Developed working flows and interfaces for system management and decision-making. 

• Access to Artificial Intelligence Functions (AIFs) repository. 

Based on the obtained results, it can be affirmed that the UC3 has validated the operation of drone’s 

operations within an AI@EDGE enhanced 5G network, incorporating AI and Edge Computing 

functionalities for automated monitoring of road infrastructures in BVLOS mode. 

The major outcomes arising from this validation include the integration of systems to enable the flight and 

operation of drones in a 5G network; the development of AI functions to automate monitoring operations 

and the deployment of the AI@EDGE platform providing access to the Edge repository of AI functions. 

These results are supported by AI@EDGE technical enablers like distributed and decentralized serverless 

connect-compute platform and AI-enabling application provisioning, as well as relevant technologies such 

as AI Functions for automating incident detection and generating 3D models; Edge Computing, by 

deployment of MEC system for accessing the AI Functions repository in drone operations; 5G for 

connection to 5G network for drone control and imagery transfer, and drones for the integration of system 

enabling BVLOS operation with advanced functions. 
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6. Use Case 4: Smart content & data curation for in-flight entertainment 

and connectivity services 

The UC4 of AI@EDGE project focuses on the development of a test bed and presents initial experimental 

results aimed at providing broadband connectivity to passengers’ on-board aircraft, as a step towards 

achieving ubiquitous access. SPI provides a detailed account of its research and experimentation conducted 

within the framework of the AI@EDGE research project, which encompasses a 5G network and an edge-

cloud infrastructure built using both avionic-certified and off-the-shelf hardware. The edge-cloud serves as 

a platform for developing and testing AIFs and other MEC applications, which represent the next generation 

of services offered to airlines and their passengers, relying on machine learning capabilities. Moreover, the 

5G network is seamlessly integrated into the SPI test-bed environment and connected to a ground-based 

5G core network via a Low Earth Orbit (LEO) satellite backhaul, such as Starlink34. 

 

 

Figure 44 Overall architecture of UC4 

 

 

 

 

 
34 Please see: https://www.starlink.com/  

https://www.starlink.com/
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Figure 44 presents the architecture of the proposed Aero Edge-Cloud and connectivity system that is 

implemented in the SPI test-rack designed for the UC4 of AI@EDGE. The figure offers a visual 

representation of the 5G system architecture that extends from the edge site of an aeronautical network to 

the ground infrastructure, facilitated by LEO satellite connectivity. The network is divided into three 

primary components: 

• Aero Edge-Cloud: This component encompasses the on-board network, including the Radio Access 

Network (RAN), Multi-access Edge Computing (MEC) host, and the Local Data Network (LDN). 

It also includes the existing In-Flight Entertainment and Connectivity (IFEC) hardware, such as 

IFEC screens or Removable Display Units (RDUs), along with the servers. 

• Satellite Backhaul: The satellite backhaul is established using the Starlink Low Earth Orbit (LEO) 

constellation, enabling communication between the aircraft and the ground network. 

• Ground Network: The ground network comprises the 5G core network and the central data network, 

which refers to the internet. 

By leveraging this architecture, the proposed system enables seamless connectivity and data transfer 

between the on-board network, the satellite backhauls, and the ground network, ensuring efficient 

communication and services for the aircraft and its passengers. 

Within the framework of AI@EDGE project, UC4 serves as the far edge component situated at the radio 

access site. Within this setup, SPI hosts the user plane function (UPF) of the 5G core on its premises, while 

the control plane is located on the ground at FBK site. This configuration enables the aircraft to function as 

an edge-cloud entity, connected to the ground network through LEO satellites. 

6.1.  Validation objectives 

Following what reported in deliverable D5.1, the focus of SPI is mostly on i) Integration, validation, test 

plans, and ii) Planned demonstrations and logistic, as reported in Table 11. 

Table 11 SPI time plan by M36 

 
Integration, validation, test plans Planned demonstrations and 

logistic  

(To be completed 

by Q2 2023) 

1. Complete integration of 

AI@EDGE platform 

components, 

2. Advanced integration of the 

content curation AIF, 

3. Advanced integration of the video 

transcoding, 

4. Advanced integration of MP-TCP 

proxy AIF 

5. Advanced integration of 

hardware acceleration. 

1. Demonstration of 5GC and 5G 

NSA RAN, 

2. Initial demonstration of 5GC 

and 5G SA RAN, 

3. Initial demonstration of content 

curation AIF, 

4. Initial demonstration of video 

transcoding, 

5. 5. Initial demonstration of 

MP-TCP proxy AIF, 
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(To be completed 

in Q4 2023) 
 

1. Advanced demonstration of 

5GC and 5G RAN, 

2. Advanced demonstration of 

content curation AIF, 

3. Advanced demonstration of 

video transcoding, 

4. Advanced demonstration of 

MP-TCP proxy AIF, 

5. Demonstration of UC4 test bed 

integrated AIFs, performance 

benchmark and collection of 

relevant KPIs, 

6. 6. Live demonstration or video 

recording of complete UC4 

functionalities 

6.2.  Validation scenario 
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Figure 45 Detailed architecture of UC4 

Figure 45 illustrates that Control Plane (CP) traffic is consistently directed to the ground-based 5G core 

network via the satellite backhaul, while the User Plane Function (UPF) is deployed on-board the aircraft. 

The Access and Mobility Management Function (AMF) and Session Management Function (SMF) are 

accessed by establishing the 3GPP-defined N1, N2, and N4 interfaces for user authentication and session 

management, as outlined in Figure 44 and Figure 45. 

User Plane (UP) traffic can be routed either to a ground network or remain on-board the aircraft to access 

Local Data Network (LDN), such as in-flight entertainment media. Consequently, users are categorized 

into two groups: (i) IFEC users who access on-board content and (ii) regular users who primarily require 

internet access. This differentiation is achieved by employing distinct Data Network Names (DNNs) that 

guide users to the respective Data Network (DN). In practice, after the attach procedure, the 5G core assigns 

two IP address pools for users, and the UPF establishes two Protocol Data Unit (PDU) sessions for each 

pool of IPs, as depicted by N6(1) and N6(2) in Figure 45. 

Similar to CP signals, the N6(2) traffic traverses the satellite connection, but with a major difference: while 

CP signals (i.e., N1, N2, and N4 interfaces) are routed to the corresponding Athonet 5G core located in 

FBK, (on the ground via ZiroTier Virtual Private Network (VPN)), traffic over N6(2) is directly sent to the 

ground to reach the internet. Within the system, the N6(1) interface establishes the PDU session to enable 

communication between wireless IFEC devices and on-board servers, particularly at the MEC host level 

and the LDN.  

As depicted in Figure 45, the MEC host comprises the MEC platform integrated with the NFVI, which 

provides storage, compute, and network resources to execute ML-based MEC applications referred to AIFs 

within AI@EDGE. Placing the MEC host at the edge enhances resource accessibility in close proximity to 

on-board users. The test case 1 (Sec. 6.3.1) explores two AIFs specifically designed for the Aero Edge-

Cloud network, running within containers on the virtual infrastructure managed by the Virtualized 

Infrastructure Manager (VIM). 

Other components indicated by the red boxes in Figure 45, including the MEC Orchestration (MEO), MEC 

platform manager, monitoring, and database, are part of the AI@EDGE Network and Service Automation 

Platform (NSAP) and Connect-Compute Platform (CCP). These components are also integrated with the 

Aero Edge-Cloud, but their detailed specifics are discussed in Section 2 and here they are solely depicted 

in the figure for the sake of completeness and clarity as part of the AI@EDGE platform. 

6.3.  Validation procedures   

6.3.1 Test case 1: AIFs development   

6.3.1.1 Popularity- and Item-based recommendation system 

Developments & Integration 

 Test case # 1.1: Recommendation System 
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Slogan & Objective          • Suggesting relevant content to the passengers on board. 

Test Scenario  

(Pre-conditions) 

• Analysis of IFEC dataset to develop a model-based 

collaborative filtering for the content curation (More 

details are described below). 

Expected Results  

(Post-Conditions) 
• To develop an ML-based application for the content 

curation for on board passengers 

General Time Plan  

(Validation Campaigns) 

• Completing and advancing the application  Q2 2023  

• Full Integration of the application in the test-rack with 

AI@EDGE platform  Q3 2023 

• Final demonstration  Q4 2023 

Test Sequence  

1. Integration of the application with the aero edge/cloud 

infrastructure. 

2. Deployment of the application in the far-edge, 

employing AI@EDGE platform 

 

Popularity-based 

The popularity-based model is a straightforward approach used to recommend movies based on their 

popularity. In this model, the popularity of a movie is determined by three factors: the watching ratio 

obtained from PAX (passengers) logs, the IMDB35 ratings, and the movie's release date. By combining 

these components, a popularity score is calculated for each movie, and the movies are sorted based on this 

score. The system then recommends movies with the highest popularity score to users. 

As for audio recommendations, our focus has been on developing a model that allows generating 

recommendations without the need for retraining. This model is saved in a dump file for easy access and 

usage.  

The following tasks are undertaken to build the movie recommendation system: 

• Collect internal and external data and preprocess them to create a dataset containing the necessary 

features for building the popularity-based model. 

• Ensure that there is no significant correlation between the features created, ensuring independence 

and avoiding biases in the recommendations. 

• Generate recommendations tailored to different airlines and routes, taking into account the 

preferences and demographics of the passengers. 

• Develop a configurable application that can generate diverse recommendations based on the airline 

and seat class selected, providing a personalized experience for users. 

 

 

 

 

 
35 Refer to: https://www.imdb.com/  

https://www.imdb.com/


 D5.3 Use cases integration, validation, and benchmarking  

 

AI@EDGE (H2020-ICT-52-2020)  90 

By accomplishing these tasks, we aim to create a robust and adaptable movie recommendation system that 

caters to the specific needs and preferences of different airlines and their passengers. 

The movie recommender system utilizes a popularity-based model, which recommends content based on 

its popularity among users. Popularity is determined by factors such as the number of views by passengers 

and the highest ratings received. This approach is beneficial as it mitigates the cold-start problem, where 

recommendations can be generated even for new users without historical data. To address the item cold-

start problem, the release year and IMDB rating of a movie are considered. The database contains records 

of passengers' activities, which serve as the basis for generating recommendations. 

The data processing and recommendation generation tasks are performed using Jupyter Notebooks36 as the 

platform/IDE, with Python37 as the programming language. The primary library used is Pandas38. The code 

is executed on a server, and the data is extracted from the database using the pyodbc39 library. To establish 

a connection with the database, an ODBC driver must be downloaded. 

The dataset is gathered and pre-processed through an SQL query. The amount of data extracted can be 

configured, and the extraction time varies depending on the airline and the number of records. Extracting 

one month of data from AFR (Air France) takes approximately 25 minutes, while extracting one day of data 

takes around 3 minutes. To account for new movies released weekly and added to the database, the system 

needs to be updated regularly to include these movies in the popularity score calculation. Choosing a 

suitable time interval is crucial. Using a longer interval, such as the past two months, may result in fewer 

viewers for movies released just a week ago, impacting their popularity score. On the other hand, using too 

short of a dataset may exclude highly popular movies from the calculations, leading to their exclusion from 

recommendations. Therefore, using one week of data provides a more up-to-date system while maintaining 

the reliability of the popularity score calculation. 

 

 

 

 
36 Please see: https://jupyter.org/  
37 Please see: https://www.python.org/  
38 Please see: https://pandas.pydata.org/  
39 Please see: https://pypi.org/project/pyodbc/  

https://jupyter.org/
https://www.python.org/
https://pandas.pydata.org/
https://pypi.org/project/pyodbc/
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Figure 46 Correlation matrix 

The correlation matrix, Figure 46, examines the relationship between different features to determine if there 

is any correlation among them. In this case, the correlation matrix indicates that there is no correlation 

between the watching ratio and the IMDB score, as well as between the watching ratio and the release year. 

This suggests that these three features are independent of each other. Consequently, the formula used to 

calculate the popularity score, which incorporates these features, is valid and appropriate for the 

recommender system. 

Figure 47 shows the process used by the application to generate recommendations. 
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Figure 47 Flowchart illustrating the process of the application to generate recommendations 

Item-based 

In order to add a more precise recommendation system for a certain passenger, we have developed an AIF 

as the Item-based collaborative filtering approach to specialize the recommended content.  

Item-based collaborative filtering is being utilized to recommend content to passengers onboard an airplane 

through the In-Flight Entertainment and Connectivity (IFEC) system. Here's a high-level overview of how 

it is being implemented in such a scenario: 

• Data Collection: Gather data about passenger preferences and interactions with the IFEC system. 

This can include ratings, reviews, watched movies, preferred genres, or any other relevant 

information. 

• Content Analysis: Analyse the content available in the IFEC system and extract relevant features 

or attributes. This could include genres, actors, directors, keywords, or any other metadata 

associated with the content. 
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• Similarity Calculation: Compute the similarity between content items based on their features or 

attributes. This can is done using k-Nearest Neighbour (k-NN) techniques. 

• User Preferences: It collects information about the preferences and interactions of the individual 

passenger for whom the recommendation is being generated. This can include their historical 

ratings, watched movies, or any explicit feedback provided. 

• Candidate Selection: Based on the user's preferences and interactions, identify the content items 

they have not yet consumed but are similar to the ones they have liked or interacted with. 

• Recommendation Generation: The algorithm generates personalized recommendations for the 

passenger by suggesting the most similar and relevant content items. This can be done by 

considering the similarity scores between items and the user's preferences. The system can 

prioritize the items with higher similarity scores and present them to the passenger. 

• Real-time Updates: Continuously update the recommendation model based on the passenger's 

ongoing interactions and feedback. This allows the system to adapt to the changing preferences of 

the passenger and provide more accurate recommendations over time. 

6.3.1.2 ML-based predictive maintenance 

Developments & Integration 

 Test case # 1.2: AIF: Seatback screen predictive failure 

Slogan & Objective          

• To gain knowledge and to build expertise in predictive 

maintenance of IFEC systems, 

• To analyze the energy efficiency of the RAVE IFEC 

system to contribute to greener IFEC systems, 

• To predict a possible failure of a seatback (RDU3). 

Test Scenario  

(Pre-conditions) 

• Validation and analysis of datasets for development of 

an application to predict possible RDU failure to be 

replaced.  

Expected Results  

(Post-Conditions) 

• To develop an ML-based application to predict when an 

RDU has to be replaced based on the on-board 

environmental conditions. 

General Time Plan  

(Validation Campaigns) 

• Completing and advancing the application  Q2 2023  

• Full Integration of the application in the test-rack with 

AI@EDGE platform  Q3 2023 

• Final demonstration  Q4 2023 

Test Sequence  

1. Integration of the application with the aero edge/cloud 

infrastructure. 

2. Deployment of the application in the far-edge, 

employing AI@EDGE platform 
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The second AIF, named as predictive maintenance model is based on machine learning (ML) and is 

specifically designed to predict failures in In-Flight Entertainment and Connectivity (IFEC) screens, also 

known as Removable Display Units (RDUs). RDUs can experience non-functional states due to various 

factors such as temperature, aircraft type, software releases, software updates, and hardware types. By 

accurately predicting these non-functional states, the aim is to minimize maintenance time and prevent 

downtime of RDUs, which can have a negative impact on passengers' quality of experience. 

• Data Collection and Aggregation: Reliable and comprehensive datasets are essential for ML 

models to make accurate predictions. In this study, the required dataset was obtained from a 

commercial SQL database that systematically stores data or logs collected from different aircraft 

in various airlines. Typically, such data is utilized by maintenance departments for offline analysis 

of aircraft system performance, including IFEC devices. The multi-label historical failure dataset 

for RDUs was extracted from the overall data maintained by the repair team, involving data 

gathering from diverse sources. 

• Overview of the Dataset: The historical data collected comprises various features that describe 

the state of an IFEC screen. These features are represented by an n-tuple, including but not limited 

to attributes such as ID, average temperature, flight duration, and last software update. Each subset 

of the n-tuple in the database corresponds to different characteristics of RDUs and identifies a 

unique screen. The database contains comprehensive raw data representing different types of 

attributes. Some data fields can be directly inputted into the ML model, while others need to be 

discarded. The initial step involves preprocessing the raw data to obtain a meaningful subset of 

data. The remaining features primarily consist of categorical (textual) and numeric data types. 

Additionally, the dataset includes an important feature that indicates whether a screen has been 

previously broken or replaced, serving as the target label class. This feature is represented by a 

binary variable, where "0" denotes a normally functioning RDU and "1" represents an RDU 

predicted to be defective by the ML model and requiring replacement. Based on the historical 

values stored in the dataset, this use case can be categorized as a binary classification machine 

learning problem. Various experiments were conducted using different algorithms to address this 

problem. 

The preliminary ML experimentation for IFEC screens (RDUs) failure prediction AIF was conducted on 

existing platforms before transferring to the Aero Edge-Cloud. Four different platforms, namely Azure, 

H2O40, TPOT41, and NNI42, were evaluated based on criteria such as Graphical User Interface (GUI) 

support, AutoML43 support, multi-core support, and ensemble model44 availability. H2O was identified as 

 

 

 

 
40 Please see: https://h2o.ai/platform/ai-cloud/  
41 Please see: http://epistasislab.github.io/tpot/  
42 Please see: https://github.com/microsoft/nni  
43 Please see: https://www.automl.org/automl/  
44 Please see: http://www.scholarpedia.org/article/Ensemble_learning  

https://h2o.ai/platform/ai-cloud/
http://epistasislab.github.io/tpot/
https://github.com/microsoft/nni
https://www.automl.org/automl/
http://www.scholarpedia.org/article/Ensemble_learning
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the best-suited platform as it provides comprehensive functions for autoML, multi-core support, and built-

in ensemble algorithms. 

A pre-processed dataset, which involved removing duplicates and null values, was divided into a 20% 

portion for testing and an 80% portion for training. Since IFEC screens failure prediction is a binary 

classification problem, H2O AutoML was used with various built-in algorithms, including XGBoost45 

Gradient Boosting Machines, H2O Gradient Boosting Machines, Distributed Random Forests (DRF), 

Generalized Linear Models, and Stacked Ensemble models. 

During each training iteration, the models were evaluated using the “Area Under The Curve” (AUC) of the 

Receiver Operating Characteristic (ROC) as a performance indicator. To address data set imbalance, the 

built-in auto-balancing method based on SMOTE (Synthetic Minority Over-sampling Technique) was 

employed. The top-performing model with the highest AUC was selected, and the F1 score was calculated 

during the testing phase, please see Table 12. 

Table 12 Testing results – RDUs failure prediction 

 
 

6.3.2 Test case 2: Multi-path TCP and MPTCP proxy 

Development & Integration 

 Test case # 2: MPTCP 

Slogan & Objective          
• To test multi-path aggregation at the transport layer in 

multi-connectivity multi-RAT scenarios. 

 

 

 

 
45 Please see: https://xgboost.readthedocs.io/en/stable/  

https://xgboost.readthedocs.io/en/stable/
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Test Scenario  

(Pre-conditions) 

• Test the possibility of increasing TCP throughput by 

using all links at the same time. 

• Test the ability to keep the end-to-end TCP connection 

when one of the links is lost or degraded. 

Expected Results  

(Post-Conditions) 

• Increase TCP throughput to roughly the sum of all 

available links. 

• The end-to-end TCP connection still works when a link 

fails or degrades. 

General Time Plan  

(Validation Campaigns) 

• Improving performance of onboard MPTCP between 

aero-certified nodes → Q3 2023 

• Deployment of MPTCP Proxy → Q3 2023 

• Deployment of Predictable MPTCP → Q3/Q4 2023 

Test Sequence  

1. Test with two links equivalents in terms of performance. 

2. Test with two links with different delay or bandwidth. 

3. Test in case one of the links is failed. 

4. Test in case one of the links is degraded. 

5. Test in case one of the links is restored after 

failing/degraded. 

  

The Multipath TCP46 (MPTCP) tests were conducted between two devices, Supermicro and one of the 

RDUs both located in the AI@EDGE subnet. The devices were connected to the same Wi-Fi network using 

two Wi-Fi dongles, allowing them to have two different links for communication: Wi-Fi and Li-Fi. The 

Supermicro was connected to a Li-Fi Access Point via Power over Ethernet cable, while the RDU was 

connected to the Li-Fi Access Point using a Li-Fi dongle. The Wi-Fi network was dedicated and configured 

specifically for these tests, ensuring minimal interference from other devices or connections. 

The Supermicro device runs Debian 11 (bullseye) server version with Linux Kernel version 5.19, while the 

RDU 3E runs a custom Linux-based OS from the PTXdist build system with Kernel version 5.10. Both 

devices have MPTCPv1 enabled by default in their kernels and are ready to use after configuration. They 

also have a Multipath TCP daemon built from source, which includes the "mptcpize"47 binary. This binary 

enforces the creation of MPTCP sockets instead of TCP sockets on both machines. 

The tests had two main objectives: measuring the achieved throughput and verifying that the end-to-end 

connection remains established even when one interface becomes temporarily unavailable. To achieve these 

objectives, an HTTP server was launched on the Supermicro side, utilizing the "mptcpize" binary to enforce 

the use of MPTCP sockets. On the client side, the "wget" command was wrapped with the "mptcpize" 

binary as well. It was used to download a large file (500 MB) from the Supermicro server. 

 

 

 

 
46 Please see: https://www.multipath-tcp.org/  
47 Details at: https://manpages.ubuntu.com/manpages/lunar/man8/mptcpize.8.html  

https://www.multipath-tcp.org/
https://manpages.ubuntu.com/manpages/lunar/man8/mptcpize.8.html
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These test configurations and procedures allowed the evaluation of MPTCP's performance in terms of 

throughput and connection resilience in a scenario with multiple network interfaces. 

 

Server’s MPTCP path manager configuration:  

Supermicro’s MPTCP path manager has been configured to establish a maximum of two MPTCP sub-flow 

and advertise two MPTCP endpoints: Wi-Fi and Li-Fi as can be seen in Figure 48 with the 

wlxec086b106ee0 (Wi-Fi) and eno1.52 (ethernet to Li-Fi AP) interfaces (Figure 49). 

 

 

Figure 48 MPTCP endpoints 

Client’s MPTCP path manager configuration:  

RDU’s MPTCP path manager has been configured to establish a maximum of two MPTCP sub-flow as 

shown in Figure 49. The client side shows no endpoints, as they are handled by the server.  

 

Figure 49 MPTCP sub-flows configuration 

Predictive MPTCP 

Unlike TCP, where data is transmitted in only one stream, MPTCP allows multiple flows (called sub-flow) 

to be used concurrently for data transmission, so for each packet, the MPTCP scheduler will have to decide 

which sub-flow to use for transmission. Various algorithms are used for this decision-making (simple, like 

round-bin, or complex, which is based on the current state of the network at each point in time). Making 

decisions based on the state of the network allows the MPTCP-scheduler to operate more efficiently, and 

by default, MPTCP-scheduler relies on the TCP signal to get the network properties, and in some cases, 

such as packet loss, it takes time to detect.  
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In this test case, the information collected at the RAN is used to help the MTPCP scheduler get more 

information about the network health earlier, even before the data is sent. In  Figure 49, through the E2 

interface, an xApp at near RT-RIC will collect metrics in gNB, and the information collected will be passed 

to a predictor application to predict, in this test case, only the probability of a packet loss. The result will 

then be passed to MPTCP to update the MPTCP scheduling policy. 

 

 

 
 

Figure 50 RAN metrics collection scheme for the MPTCP scheduler 

6.3.3 Test case 3: Video Streaming for IFEC services 

Video Streaming for IFEC services 

Test case # 3: Adaptive Video Streaming 

Slogan & Objective          

Adaptive video streaming refers to the technique of 

dynamically adjusting the quality of video content based on 

the viewer's network conditions and device capabilities.  

It aims to deliver the best possible viewing experience by 

continuously adapting the video quality in real-time. 

Test Scenario 
• The adaptive video streaming technology allows to 

define a “manifest file” which describes the parameters 

of the video streams (e.g., bitrate) 
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• We have defined two different manifest files, one for the 

Economy class and one for the Business class. 

• When selecting a video content from its RDU, the user 

will be automatically associated with its class via the 

manifest file. 

Expected Results 

• The selected video is streamed to the RDU according to 

the class (Business/Economy). 

• As the video plays, the video player continuously 

monitors the network conditions, such as available 

bandwidth and latency. It periodically requests and 

downloads small video segments, usually a few seconds 

in duration, from the server. 

• Using the information obtained from the video segments, 

the video player dynamically adjusts the video quality 

for subsequent segments. If the network conditions are 

good, it stays at the maximum quality level for related 

user class. Conversely, if the network conditions 

deteriorate, it may switch to a lower quality version to 

avoid buffering or interruptions. 

General Time Plan  

• Q1/2023: First trials at ITL testbed. 

• Q2/2023: Integration into the SPI testbed and first 

experiments. 

• Q4/2023: Final validation 

Test Sequence  

1. Access to the Recommendation system from the RDUs, 

2. Check that the user can access the application for 

selecting a video among those stored locally at the MEC 

server. 

3. Video selection by the user. 

4. Verify that the quality of the video stream to the RDU 

complies with the user's class. 

5. Force a degradation of the network condition. 

6. Verify that adaptive video streaming allows user to enjoy 

video content without interruptions, buffering, or 

noticeable quality degradation. 

 

6.3.4 Test case 4: 5G Connectivity and Local Traffic Breakout  

The following three connectivity tests will be run as soon as the 5G deployment will be completed to 

validate the correct operations of the 5G network in this use case. 

 

5G Connectivity and Local Traffic Breakout 

 Test case #4.1: Connection between gNB and 5GC 

Slogan & Objective          • Interface setup between gNB and 5GC. 
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Test Scenario  

(Pre-conditions) 

• 5GC instance (remote control plane and edge user plane) 

running on servers or VMs. 

• 5GC configured with active license and running, gNB 

should be reachable through the network. 

Expected Results  

(Post-Conditions) 
• No connection errors. Log messages show gNB 

successfully attached to the AMF. 

General Time Plan  

(Validation Campaigns) 
• Q3 of 2023. 

Test Sequence  

• Configure the network interfaces and the CP, including 

all the related NFs. The system should show settings 

confirmation. 

• Set the IP address of the gNB in the whitelist of the 

5GC’s web interface. 

• Configure the N2 interface for interconnection between 

AMF and gNB. 

• Connect the gNB to the 5GC (AMF). 

 

5G Connectivity and Local Traffic Breakout 

 Test case #4.2: UE’s attach to and detach from the 5G network 

Slogan & Objective          
• Check if UEs successfully attach to and detach from the 

correct PLMN and S-NSSAI. 

Test Scenario 

(Pre-conditions) 

• 5GC (remote control plane and edge user plane) running 

on servers or VMs and connected to a gNB.  

• 5GC configured, gNB reachable and interconnected to 

the 5GC AMF. 

• UE connected to the same gNB. UE must be pre-

provisioned into the 5GC. 

Expected Results  

(Post-Conditions) 
• Log messages show UE successfully registered, attached 

and detached to the 5GC. 

General Time Plan  

(Validation Campaigns) 
• Q4 of 2023 

Test Sequence  

• Configure the UE (virtual or physical) with the correct 

settings of PLMN, S-NSSAI and DNN. The system 

should show settings confirmation. 

• Register through the GUI the UE into the 5GC with SUPI 

identity. 

• Review the 5GC log messages related to the UE 

attachment. Verify that no error occurred. 

• Detach the UE from the 5GC. 
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5G Connectivity and Local Traffic Breakout 

 Test case #4.3: Connectivity between UE and data network (DN) 

Slogan & Objective          

• Check uplink/downlink traffic between UE and DN 

through the 5GC (UPF), demonstrating the end-to-end 

connectivity between the connected devices and the edge 

servers. 

Test Scenario  

(Pre-conditions) 

• 5GC (remote control plane and edge user plane) running 

on servers or VMs and connected to a gNB.  

• 5GC configured, gNB reachable and interconnected to 

the 5GC AMF.  

• UE connected to the same gNB. UE must be pre-

provisioned into the 5GC and attached to the 5GC. 

Expected Results  

(Post-Conditions) 

• Connectivity between UE and DN is operational. 

• iPerf48 shows uplink/downlink traffic. 

• ICMP messages are acknowledged. 

General Time Plan  

(Validation Campaigns) 
• Q4 of 2023. 

Test Sequence  

• Establish a new PDU session. Log messages should 

show the successful creation of UPF session. 

• Configure iPerf agents on the UE and in a reachable 

server of the DN. Verify that there are no registering 

errors. 

• Execute iPerf session or ping session. The test plan 

should start running. An iPerf or ping experiment will be 

started. 

• Review the 5GC log messages or check iPerf or ping 

results. There should be no errors, warning messages or 

dropped packets. 

 

6.3.5 Test case 5: 5G performance to access the Internet over Starlink  

The test case is to validate Internet connectivity through Athonet 5G core (edge UPF), SrsRAN, and LEO 

satellites (SpaceX Starlink).  

  

 5G connectivity 

 Test case 5: 5G performance to access the Internet over Starlink 

 

 

 

 
48 Please see: https://iperf.fr/  

https://iperf.fr/
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Slogan & Objective          
• To enable broadband connectivity onboard through LEO 

satellite backhaul 

Test Scenario  

(Pre-conditions) 
• 5G User plane traffic to street to Data Network through 

LEO satellite. 

Expected Results  

(Post-Conditions) 
• Internet Connectivity between UE and DN is 

operational.  

General Time Plan  

(Validation Campaigns) 
• Q4 of 2023. 

Test Sequence  

• Defining new IP pool for users to access internet. 

• Establish a new PDU session from Edge UPF to DN. 

• Performing speed-test to measure the throughput and 

latency. 

 

6.4.  Validation scenario 

The UC4 testrack setup in SPI is depicted in Figure 51, featuring all AIFs and the application. The 

configuration comprises 16 operational RDUs, an SCU (aero-certified Server), and a SuperMicro (COTS 

Server), forming an edge cluster managed by K8S as VIM. Additionally, it incorporates an orchestration 

lever (MEO) as part of the AI@EDGE CCP. 

The first row of RDUs (1A, 1B, 1C) is dedicated to the monitoring system, overseeing various metrics 

across the entire cluster, including CPU and memory consumption, data transmission rates, disk storage, 

etc for each working node. The second row serves the crew members: RDU-2A is assigned to initiate seat 

screen prediction failure (or RDU swapping) AIF, 2B functions as the crew panel for activating the 

recommendation engine for passenger movie suggestions, and 2C provides a comprehensive overview of 

RDUs status, running AIFs, and applications through Portainers49 (refer to Figure 52 and Figure 53). 

Rows three and four of RDUs cater to passenger interactions, offering access to the GUI and the 

recommendation engine AIF for content consumption. Lastly, RDUs 5A, 5B, 5C, and 6A showcase the 

outcomes of RDU swapping AIF on separate screens. 

 

 

 

 
49 https://www.portainer.io/ 
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Figure 51 UC4 Test rack setup at SPI with deployed AIFs and other applications 
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Figure 52 Visualization of cluster by Portainer 

 

 

Figure 53 Visualization of namespaces by Portainer 

6.4.1 Test case 1 results: AIFs development   

Test Case #1.1: Recommendation system 

• Service Deployment (delivery) time: < 2s (Initial recommendation) 
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• Service Recovery time: ~1s (when the image already pre-loaded in the node) 

 

Test Case #2.1: Seatback screen predictive failure 

• F1 Score: 0.878 

• Service Deployment (prediction) time ~ 15s 

• Service Recovery time: ~1s (when the image already pre-loaded in the node) 

The experiments were conducted using a Dell PowerEdge server with an AMD EPYC 7402P processor, 24 

CPU cores, 64 GB of RAM, and Linux OS Kernel version 4.19 with Debian 10 distribution. The training 

time (Figure 55) and F1 score results (Figure 56) were analysed, and it was observed that the H2O Code-

based version provided lower training time. The DRF algorithm was selected as the one with the highest 

AUC value. The F1 score of the DRF algorithm was found to be highest in the H2O Code-based version 

using the top 12-feature dataset (Figure 54). 

 

Figure 54 Considered features   
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Figure 55 Training time 

 

 

Figure 56 F1 score 

Based on these results, it is concluded that the IFEC Failure Prediction App can rely on the H2O Code-

based platform with the DRF algorithm for accurate predictions. 

Furthermore, Figure 57 provides a report on the CPU consumption of the SCU, which hosts the RDU 

swapping model. This analysis focuses on the period when the crew member initiates the model through 

the GUI assigned to them (on RDU-2A). During the active operation of the model, the SCU experiences a 

peak CPU consumption, reaching up to 95% of its capacity. In contrast, when the model is not in operation, 

the SCU typically utilizes around 35% of its CPU resources.  

In contrast, Figure 58 centres its attention on the CPU consumption of RDUs 5A and 6A during their refresh 

cycles to prepare for new measurements and predictions. During these refresh intervals, their CPU usage 

can escalate, nearly reaching half of their capacity. In standard operating conditions, outside of the refresh 

periods, the CPU consumption typically maintains a level of around 15-20%. 
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Figure 57 CPU consumption when prediction model AIF is being run 

 

Figure 58 CPU consumption when 2 RDUs (5A, 6A) are being refreshed for a new prediction 

6.4.2 Test case 2 results: Multi-path TCP and MPTCP proxy 

Results: 

• Connectivity between RDUs and the server is established. 
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• MPTCP with default schedular between RDUs and server is established. 

• Max achieved on Li-Fi alone: ~180 Mbps for 1 UE 

• Max achieved on Wi-Fi alone: ~80 Mbps for I UE 

• Max achieved on Li-Fi/Wi-Fi aggregation using MPTCP: ~250 Mbps for 1 UE 

Figure 59 demonstrates the MPTCP connection test results between the Supermicro server and the RDU 

device. This test was conducted using the default TCP Window Size. However, the test revealed unstable 

throughput performance, indicating fluctuations in the data transfer rate over time. 

The figure presents a chart showing the throughput performance over time during the MPTCP connection 

test. The fluctuations in the graph indicate varying data transfer rates, suggesting that the default TCP 

Window Size may not provide optimal performance for MPTCP. 

The unstable throughput performance highlights the need for further optimization to achieve consistent and 

reliable data transfer rates using MPTCP. 

 

 

Figure 59 MPTCP connection test results - default TCP Window Size 

Figure 60 displays the MPTCP connection test results between Supermicro and RDU with increased TCP 

Window Size on client side. We can clearly see that in this case, increasing TCP Window Size has led to 

slight improvement in the MPTCP performance, especially in terms of achieved throughput.    
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Figure 60 MPTCP test result of content loading from Supermicro to RDU 3E with increased TCP Window Size 

The benefits of using MPTCP to improve network reliability are clear from the test results, as it enables the 

usage of both Wi-Fi and Li-Fi links for content loading. However, in these tests, the performance of MPTCP 

was found to be unstable. This was because the client side, RDU, was using Kernel version 5.10, which 

may have had some limitations in MPTCP implementation.  

However, MPTCP implementation in the newer Linux Kernels provides better performance, improved 

network reliability, and increased data rate, as evidenced by other tests. For example, when we replaced the 

RDU 3E with a laptop running a Kernel version higher than 5.13 (in this case, 6.1), we observed improved 

performance and stability in the MPTCP connection as can be seen in Figure 61. This demonstrates the 

importance of using an up-to-date Kernel version when working with MPTCP to achieve the best possible 

results.  

 

Figure 61 MPTCP test result of content loading from Supermicro to Laptop using Wi-Fi and Li-Fi with default TCP Window Size 

During the MPTCP testing phase between Supermicro and a Laptop, the TCP Window Size on the client 

side was increased from its default value. As a result, the tests produced better results, with data transfer 

rates reaching up to 190 Mbps, please see Figure 62. These findings suggest that increasing the TCP 
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Window Size on the client side can significantly enhance MPTCP performance in the latest stable Linux 

Kernels.  

 

 

Figure 62 MPTCP test result of content loading from Supermicro to Laptop using Wi-Fi and Li-Fi with increased TCP Window 

Size 

The results of MPTCP tests demonstrate that the server can establish a connection using multiple sub-flows 

with the client using different paths, allowing for increased reliability. Moreover, by increasing TCP 

Window Size, network performance can be enhanced, resulting in higher throughput. This configuration 

enables the server to fully utilize the available network resources, providing a better experience for the 

client.  

Figure 63 shows the setup to provide both Wi-Fi and Li-Fi wireless interfaces for the nodes of UC4 test 

rack. 

 

Figure 63 Wi-Fi/Li-Fi connectivity in UC4 
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To demonstrate the effectiveness of the default MPTCP scheduler within the UC4 testbed, we have 

categorized passengers into three classes: "First class," "Business class," and "Economy class." All nodes 

within each class are equipped with two interfaces of Wi-Fi and Li-Fi. However, when running an MEC 

application, the nodes in the economy class route their traffic exclusively through Wi-Fi, while those in the 

business class solely utilize Li-Fi for data transmission. In contrast, the first-class nodes leverage both 

interfaces for connectivity, with MPTCP enabled.  

This configuration allows the first-class nodes to achieve the highest data rates compared to the other two 

classes, while also ensuring a more robust connection in case one of the links experiences a failure. 

Furthermore, by running the MEC application, it becomes straightforward to change the class of each RDU 

by simply adjusting the class tag within Kubernetes (K8S), without the need for any further RDUs 

modifications. 

Figure 64 and Figure 65 illustrate the performance of the nodes in accordance with the aforementioned 

scenario with three clients. 

 

 

Figure 64 Integration of MPTCP in UC4 test rack 
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Figure 65 Data rates and performance of different nodes with different connectivity 

 

6.4.3 Test case 3 results: Video Streaming for IFEC services 

• Manifest files for adaptive video streaming technology are operational. 

• Average CPU consumption of RDUs during streaming ~ 85% (Figure 66). 
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Figure 66 CPU consumption of Streaming videos on four RDUs (3A, 3B, 4A, 4B) from SuperMicro. 

6.4.4 Test case 4 results: 5G Connectivity and Local Traffic Breakout 

Test Case #4.1: Connection between gNB and 5GC 

• No connection errors. Log messages show gNB successfully attached to the AMF. Control plane 

messages between the RAN and the 5GC are correctly exchanged. 

 

Test Case #4.2: UE’s attach to and detach from the 5G network 

• Log messages show UE successfully registered, attached, and detached to the 5GC. 

 

Test Case #4.3: Connectivity between UE and data network (DN) 

• Connectivity between UE and DN is operational (Figure 67 shows the testbed setup). 

• iPerf50 shows uplink/downlink traffic. 

• ICMP messages are acknowledged. 

 

 

 

 
50 Please see: https://iperf.fr/  

https://iperf.fr/
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• >100 Mbps in close proximity between 5G-UE and gNB with SISO and 40MHz BW. 

 

 

Figure 67 5G Connectivity and Local Traffic Breakout setup for UC4 

 

6.4.5 Test case 4 & 5 results: 5G performance to access LDN and the Internet over Starlink 

Following Figure 44 and Figure 45 there are two types of 5G users to access to the internet through LEO 

orbit satellite backhaul. The backhaul for our tests is Starlink satellites.  

5G performance 

Figure 68, Figure 69, and Figure 70 demonstrate analysis of the performance of the 5G User Equipment 

(UE) employing SrsRAN as the gNB. The experimentation utilized the SDR (Software-Defined Radio) 

board B210, maintaining a configuration of Single Input Single Output (SISO), and a 40MHz bandwidth 

consistently across all tests. The tests focused on Band n41 of NR (New Radio), providing insights into the 

behaviour of the 5G UE under these conditions. 

A key parameter to measure throughput was the distance between the 5G UE and the gNB. By varying the 

proximity of the 5G UE to the gNB, we evaluated performance metrics across different scenarios. Figure 

68, Figure 69, and Figure 70 serve as visual representations of the outcomes observed during these tests. 

The results showcased in the figures encompass performance indicators of throughput, packet loss, and the 
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MCS (Modulation and Coding Scheme) index. As can be seen from Figure 68, the average throughput at a 

close distance to the gNB is about 100 Mbps, whereas this value can go down to around 70 Mbps when the 

UE is about 10m from the gNB. Moreover, the results show the modulation can hardly reach to 256-QAM 

and it remain mostly with 64-QAM. Moving to higher modulation can cause a high packet-loss that force 

the gNB to switch to lower modulations immediately (e.g., 64-QAM). 

 

 

Figure 68 End to end throughput 
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Figure 69 Packet loss 

 

Figure 70 MSC index according to 38.214 - Table 5.1.3.1-2: MCS index table 2 for PDSCH51 
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Moreover, we observed also the round-trip time for both Control Plane (CP) and User Plane (UP). As 

already discussed in Deliverable D5.2 and highlighted in Figure 67, both control and data plane go through 

Starlink, however, for the Control Plane we are using a ZiroTier VPN to reach Athonet 5G core, deployed 

in FBK to establish N1/N2 and N4. (Shown in Figure 44 and Figure 67). The N6(2) interface, on the other 

hand, is not going through the ZiroTier VPN and reach to the Data Network (DN) (e.g., Internet) directly 

through the Starlink Satellite. Figure 71 report the round-trip time for both CP and UP. Starting from the 

left, the initial two charts illustrate the utilization of both Starlink and the ZiroTier VPN to establish point-

to-point connectivity between SPI and Athonet 5G core at FBK for the control plane. The third chart, 

distinguished in grey, depicts the latency in the 5G data plane that traverses through Starlink without any 

intermediary VPN. Concluding the sequence, the yellow chart represents the latency between the 5G-UE 

and the MEC. 

 

 

Figure 71 5G latency tests for Internet and MEC 

 

Data Plane monitoring for MEC and Internet access 

Figure 72 to Figure 75 have been included to enhance the visualization of data plane traffic. These figures 

depict the monitored traffic transferred and received over the N3 interface. Specifically, Figure 72 and 

Figure 73 illustrate the data rate for accessing LDN, representing the download of content and streaming 

from the edge server, respectively. 

 

 

 

 
51 Please see Specification: 3GPP TS 38.214 V18.0.0 (2023-09) - link 

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3216
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Moreover, Figure 74 and Figure 75 provide insights into the patterns of received and transmitted data 

reaching the internet. While Figure 74 illustrates the data traffic when watching a YouTube video, Figure 

75 portrays the data flow during online streaming; considering that the maximum data rate for internet 

access was showcased in Figure 68 doing a “speed test”. It is crucial to emphasize that, for internet access, 

all data traffic traverses through the LEO satellite, SpaceX Starlink, utilizing the N6(2) interface. 
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Figure 72 Downloading a content from LDN by smartphone (5G-UE) 

 

Figure 73 Streaming on Smartphone(5G-UE) from LDN 
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Figure 74 Watching YouTube Video by smartphone (5G-UE) 

 

Figure 75 Watching Live Streaming online (Internet) by smartphone (5G-UE) 

 

6.5.  Final remarks 

The importance of AI@EDGE platform in UC4 is multifaceted: 

• Firstly, it involves integrating 5G communication with on-board infrastructure and connecting to 

ground-based 5Gcore, following the 3GPP 5GNTN specifications. Additionally, incorporating 

edge UPF on an aircraft facilitates the introduction of edge computing within the 5G and B5G 

network framework in the aviation industry. Utilizing real LEO satellites, such as SpaceX Starlink, 
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enables detailed measurements on various parameters, allowing to achieve the KPIs regarding the 

5G-connectivity system. 

• Secondly, the implementation of a cluster and the utilization of Virtualized Infrastructure Manager 

(VIM) and MEC Orchestrator (MEO) through the AI@EDGE platform provide complete control 

over on-board AI-based applications known as Artificial Intelligent Functions (AIFs). This 

development sets the stage for the next generation of InFlight Entertainment (IFE) systems. 

• Thirdly, the incorporation of multi-link aggregation, achieved by enabling Multi-path TCP 

(MPTCP), demonstrates the simultaneous use of two wireless links (specifically WiFi and LiFi) 

for on-board communication, resulting in more robust and higher capacity communication that 

contributed in achieve the KPIs regarding the onboard connectivity system. 

The integration of these three main concepts of the AI@EDGE platform within UC4 contributes to the SPI 

main product, InFlight Entertainment and Connectivity (IFEC) systems. 

The future improvement could go mainly to the direction of using the best potentials of 5G RAN (such as 

MIMO and higher BW), the usage of MPTCP can be also adopted for 5G link which was not feasible within 

the timeframe of AI@EDGE project due to limitation of proper 5G dongles.   
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7. Conclusions 

Within WP5, the tasks 5.1, 5.2, 5.3, 5.4, and 5.5 dealt with the integration, validation and benchmarking of 

the project's use cases.  Starting from the initial testbed’s configurations, the AI@EDGE platform was 

deployed on all the testbeds also integrating a complete 5G network which includes, in each testbed, several 

HW and SW components related to the radio, Edge, and core functionalities.  

Achieving this result required a very complex system integration process driven by the specific 

requirements, constraints, and needs of each testbed, mainly due to the heterogeneity of the four use cases. 

To meet the use cases requirements, the related applications were designed and developed to leverage the 

project's technological enablers also integrating the AIFs and data pipeline support, for their deploying at 

the edge. Having the validation procedures as a reference, in the final phases of the project a test campaign 

was carried out to collect results and evaluate KPIs. All the outcomes have been collected and presented in 

this deliverable highlighting scenarios, challenges, and objectives for each of the use cases. 

Sections 3.5, 4.5, 5.5, and 6.5 report the final remarks, on a use case basis, on the obtained results explaining 

how AI@EDGE contributed to the advancement of each of the cases, creating a basis for further 

improvement and optimizations that can boost the impact to the relevant markets.   

Furthermore, with the submission of deliverable D5.3, the milestone MS5.6 (Final validation completed) 

foreseen for M36 can be declared achieved. 
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