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Executive Summary 

The main goal of AI@EDGE is to build a platform and a set of accompanying tools for enabling secure and 

automated management, orchestration and operation of AI-powered services over edge and cloud compute 

infrastructures, with close to zero-touch of the underlying heterogeneous MEC resources (network, storage, 

and compute resources). One of the key aspects to achieve this vision, is to develop a set of solutions broadly 

divided into two distinct areas: (i) solutions for the creation, utilization, and adaptation of secure and 

privacy-aware AI/ML models; and (ii) solutions managing distributed resources inside the telecom 

operators’ infrastructure. 

This document constitutes a key control point for the achievement of MS22 “First release of the AI@EDGE 

Platform”. The report summarizes the work carried out in the scope of “WP4. Connect-compute platform” 

towards the design, prototype and early validation of a connect-compute platform supporting perceived 

zero-latency services using a mix of computing and connectivity resources. This document, “D4.1 Design 

and initial prototype of the AI@EDGE connect-compute platform”, is the first of two iterative reports 

covering the AI@EDGE project period from M5 to M12. The document presents the overall description of 

the connect-compute platform design, the description of the HW accelerated solutions for AI/ML, the data-

driven service lifecycle management solutions for the deployment, management, and monitoring of end-to-

end AI-enabled applications, combined with a cross layer, multi-connectivity-enabled disaggregated RAN 

into a single connect-compute platform, allowing developers to take advantage of the new capabilities 

offered by 5G using well established cloud-native paradigms. 

This report discusses the following research objectives: i) design and validate a connect-compute platform 

enabling the creation of network slicing, ii) extend ETSI MEC/NFV architectures with applications and 

models capable of providing the AI@EDGE platform with the context and metadata necessary to take 

automatically actionable decisions and to realize intelligent data and computation offload control and 

management of applications and services deployed over the decentralized and distributed AI@EDGE 

platform, iii) investigate different hardware acceleration solutions (FPGA, GPU, CPU) spanning from the 

terminals to the cloud for highly decentralized and distributed workload management, iv) analyse and 

compare dual-connectivity monolithic RANs with cross-layer multi-connectivity disaggregated RANs to 

see if dynamically adapts the network topology to the network conditions. 

The achievements reported in this deliverable report the progress towards fulfilling the project’s 

overall Objective 4 “To design, prototype, and validate a connect-compute platform supporting perceived 

zero-latency services using a mix of computing and connectivity resources” and Milestone MS22 “First 

release of the AI@EDGE Platform”. 

The analysis and results provided within this report belong to the first phase of the AI@EDGE connect-

compute platform roadmap that includes the initial elicitation of technical requirements and architecture 

design together with the description of the computational environments provisioned for the development of 

the platform. 
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1. Introduction 

This report includes the overall description of the connect-compute system to be delivered, involving 

resource management, data-driven service orchestration and lifecycle management, and 

security/privacy/data-protection mechanisms. 

The AI@EDGE connect-compute platform has been designed to support a variety of virtualization 

technologies - VMs, containers, K8s pods as well as FaaS - which enable a very fine-grained exploitation 

of the available resources across the edge-cloud continuum. In addition, the AI@EDGE platform supports 

a distributed, multi-layer cloud deployment where orchestration mechanisms take place within both the 

cloud domain (centralized) and the telecom domain (distributed).  

The purpose of the first period from M5 to M12 was the design of a connect-compute fabric integrating 

state-of-the-art cloud-native technologies - FaaS/serverless - with a disaggregated 5G Radio Access 

Network (RAN) supporting beyond R16 cross-layer, multi-connectivity. The resulting system will allow 

workloads to be intelligently spread and scaled across the connect-compute fabric according to their 

requirements. Moreover, AI@EDGE investigates on leveraging heterogeneous hardware acceleration 

solutions - CPU, GPU, and FPGA - to optimize energy consumption, performance, and security for specific 

AI-based workload types. 

The content of this report describes the work carried out in the scope of “WP4. Connect-compute platform” 

towards the initial design, prototype and early validation of the AI@EDGE connect-compute platform. The 

systems and software modules described alongside the document directly relate to the ones described in 

WP3 as part of the Network Platform Automation. 

The achievements reported in this deliverable report the progress towards fulfilling the project’s 

overall Objective 4 “To design, prototype, and validate a connect-compute platform supporting perceived 

zero-latency services using a mix of computing and connectivity resources” and Milestone MS22 “First 

release of the AI@EDGE Platform” 

Since the connect-compute platform is a core element of the AI@EDGE platform, this report has links with 

the technical work carried out across WP2, WP3 and with the validation scenarios described in the scope 

of WP5. 

To get a better understanding of the content of this report, the suggested reading path is the following: 

• “D2.1 Use cases, requirements, and preliminary system architecture” → This report provides a 

preliminary version of the AI@EDGE system architecture together with functional and system 

requirements associated with the use cases. 

• “D2.2. Preliminary assessment of system architecture, interfaces specifications, and techno-

economic analysis” → This report provides the initial AI@EDGE system architecture, the 

interfaces, and the protocols to be used for the data exchange. 

To get a complete understanding of the AI@EDGE solution another recommended report to read is: 

• “D3.1 Initial report on systems and methods for AI@EDGE platform automation” → This report 

summarizes technical platform requirements and outline initial systems and methods for the 

Network Platform Automation. 

The primary target of the document is external technical personnel that are willing to adopt the AI@EDGE 

solution. Additionally, this document can be also valuable to internal AI@EDGE technicians (e.g., from 

WP3 and WP5) involved in the prototyping and implementation of the AI@EDGE platform. 
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The document’s outline is as follows: the first section introduces the AI@EDGE connect-compute platform 

and its objectives. The second chapter describes in more detail the AI@EDGE connect-compute platform 

covering aspects like its component’s specification, the envisioned development roadmap as well as the 

description of the computational environment where each of the modules will be developed and validated.  

The third chapter presents AI@EDGE support offered as a serverless platform for deploying event-driven, 

stateless functions. Section 4 covers the connectivity through disaggregated radio access (RAN). The fifth 

section describes the data-driven service lifecycle for AI-enabled applications. Section 6 covers the cross-

layer, multi-connectivity specific subsystems and their roadmap for the project. Section 7 approaches the 

HW accelerated solutions for AI/ML considered during the first project period. Finally, section 8 focuses 

on the platform next steps. 
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2. The AI@EDGE Connect-compute Platform 

2.1 Overview 

The following section presents an overview of the AI@EDGE connect-compute platform (CCP), referring 

to the functional architecture, components specification, roadmaps, and features. In AI@EDGE, the 

Connect compute platform provides the fabric for AIFs orchestration and management across various edge 

levels/locations. It is also responsible for assuring the connectivity between the different system elements 

and for managing the available computing resources. It is one of two main components of the AI@EDGE 

Architecture (presented in D2.2), together with Network and Service Automation Platform (NSAP), which 

instead implements the system network automation D.3.1. In Figure 1, the Connect-compute Platform is 

shown, together with its relationship with the NSAP. The figure also shows the location options of the cloud 

resources, namely Far Edge, Near Edge and Cloud. 

 

 

Figure 1 Draft system architecture of the AI@EDGE connected-compute platform. 

 

Figure 1 depicts the Connect Compute Platform in detail, with the location of the platform components 

distributed between the Central Office and the Radio Access Sites. Multiple MEC systems are considered. 

A MEC system is a collection of MEC hosts and MEC management processes, which are necessary to run 

MEC applications. Each MEC host contains a MEC platform and the corresponding virtualization 

infrastructure, which provides compute, storage, and network resources to MEC applications. The MEC 

Platform provides the functionalities required to run applications at the edge, enabling them to provide and 

consume MEC services. The MEC Platform can provide itself with several MEC services, such as the RNIS 

service. The MEC host is strategically placed by the edges of the network to provide computation and 

storage capabilities near the access network and provides, among other advantages, lower latency. To this 

aim, the 5G traffic is steered towards the MEC host where it can be processed (more details on the 

integration of the MEC host with the 5G infrastructure are given in the following paragraph). The MEC 
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host can be therefore considered as an edge cloud able to host MEC applications and User Application The 

virtualization infrastructure provided by the MEC hosts in AI@EDGE will be based on Kubernetes, who 

manages containerized workloads and services and facilitates configuration and automation processes. The 

MEC hosts will also deploy a FaaS Platform, supporting event-based, stateless, serverless functions. 

Finally, the near-RT RIC will support AIFs relying on RAN data for network automation.  

The AI@EDGE connect-compute platform envisions an architecture for multi-site and distributed 

environments. To fulfill this challenge, the consortium is currently evaluating the benefits and drawbacks 

offered by both the ETSI MEC and the ETSI MEC in NFV architectures. Furthermore, it must be decided 

which choice is better aligned with the system requirements for the deployment of the CCP, as detailed in 

D2.1. This document describes the different components and software artefacts being considered for each 

of the options and the implications they may have to drive the final decision. 

Both deployments offer the same distributed layout of the platform, being it composed of a set of MEC 

systems, which at the same time comprise a group of near edge and far edge nodes. The far edge nodes 

have limited computational resources and minimal hardware acceleration capabilities compared to the near 

edge nodes. Moreover, these nodes lack of orchestration capabilities. By contrast, the near edge nodes not 

only comprise specific modules for the orchestration of applications, but they possess greater computational 

capacity and more advanced hardware acceleration units (GPUs and FPGAs).  

At the same time, they both cover certain exclusive functionalities. On the one hand, the ETSI MEC 

architecture aims to provide a generic vision for any sort of virtualization infrastructure, which provides 

greater flexibility to integrate functionalities such as the serverless platform and introduces a more light-

weight orchestration and management. On the other hand, the ETSI MEC in NFV variant has aimed to 

make it possible the adoption of NFV virtualized network functions on the same infrastructure, which has 

facilitated the progressive transition of telco industries, academia and tools developments. This has also 

enabled the introduction of very well-known orchestration and management tools, such as Open-Source 

MANO (OSM), and their adoption in a multitude of previous European projects. While on the one hand the 

second one may be more mature and could be leveraged given the availability of existing software, it is also 

true that the former architecture provides greater flexibility to fill the gaps and develop the tools needed to 

fulfill the AI@EDGE Connect-Compute Platform’s requirements.  

Moreover, this section also presents the roadmap expected for the inclusion of functionalities required in 

the Connect-Compute Platform. Notice that the roadmap presented in this section corresponds to the initial 

project planning, responsibilities and roles played by the various components. 

2.2 Functional Architecture 

As described in more detail in D2.1, the functional architecture is composed of several tiers, located both 

at the cloud and at the edge.  

Taking as a reference this functional architecture,  

Figure 2 and Figure 3 depict its deployment options for the connect-compute platform based on the ETSI 

MEC in NFV and the ETSI MEC architectures, respectively.  It should be noted that independently from 

the option, the location and functionalities provided by the NSAP are the same, and they just differ in the 

way and modules involved in the orchestration of applications, as is described later. Both figures show a 

system comprising various MEC systems, and the NSAP. A connection to the cloud could be implemented 

if more levels are developed, although for the sake of simplicity the aforementioned figures do not depict 

the computational capabilities of such a cloud tier, and just provides the view of the NSAP together with 

the near and far edges. 
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In both architectures (ETSI MEC and ETSI MEC in NFV) the AI@EDGE Network & Service Automation 

Platform (NSAP) is presented, which contains besides the multi-tier orchestrator, the non-RT RIC and 

Intelligent Orchestrator Component. 

In both cases, the deployment and management of applications follow a combination of hierarchical and 

distributed approaches. The initial request for deployment is meant to be received by NSAP, and 

specifically to be managed by the multi-tier orchestrator (MTO). This entity will decide between Cloud or 

MEC, by intelligent external selection or some other method to be decided, what happens is that it gets to 

a MEO, by intelligent external selection or some method to be decided. This is the main difference between 

the two architectures, in the ETSI MEC, the MEO can do it; however, in the ETSI MEC in NFV, this duty 

goes to the NFVO. This vision intends that the platform and the applications deployed can continue its 

execution even if the MTO goes down, since the rest of functionalities would be managed locally at each 

MEC system.  

In terms of modules and functionalities, in addition to the management of all entities in the form of VNFs, 

the main difference between the two deployment options is the existence of one or more entities dedicated 

to the onboarding and orchestration operations.  

Figure 2 shows the presence, at each MEC system, of a MEC Application Orchestrator (MEAO), an NFV 

Orchestrator (NFVO) and a VNF Manager (VNFM), while in Figure 3, there is a single entity dedicated to 

orchestration matters, namely the MEC Orchestrator (MEO). While in the second vision the MEO oversees 

onboarding, placing and instantiating the applications, in the former vision the onboarding and instantiation 

are offloaded to the VNFM and NFVO, respectively, given that in this architectural version both 

applications and MEC systems are effectively deployed as VNFs. 
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Figure 2 Connect Compute platform (version aligned with the ETSI MEC in NFV architecture) 

 

In the case in which the CCP’s deployment follows the ETSI MEC in NFV architecture ( 

Figure 2), upon receiving a request from the multi-tier orchestrator, the MEAO delegates the lifecycle 

management of the applications to the NFVO and the VNFM. In this case, the MEC platform is 

consequently also deployed as a VNF, still exposing the MEC services to be consumed by the deployed 

applications. 

The Os-Ma-nfvo interface between MEAO and NFVO is used for network service instantiation and update, 

primarily used to manage Network Services, i.e., several VNFs connected and orchestrated to deliver a 

service [1]. The NFVO and VNFM, from the MEC System Level, which interact directly with VIM in the 

near and far edges, via the Or-Vi and the mm6 interfaces, respectively, located in each MEC system, have 

the function to manage virtualized resources e.g., to realize the application lifecycle management and to 

manage capacity. The MECPM-V (MEC Platform Manager - NFV) is related to the MEC Platform, via 

mm5 interface, to perform platform configuration, configuration of the application’s rules and 

requirements, application lifecycle support procedures, management of application relocation. 

The Ve-Vnfm-em interface between the VNFM and MECPM-V manages the lifecycle of the MEC 

platform. The MEAO communicates with MECPM-V, through the mm3* interface for the management of 

the application lifecycle, application rules, requirements, and keeping track of available MEC services [2]. 
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Figure 3 Connect Compute platform (version aligned with the ETSI MEC architecture) 

In Figure 3 the CCP is aligned with the ETSI MEC architecture, where again the MTO, defined in [3]is 

responsible for instantiating MEC Apps. As opposed to the previous case, here the MEO is the entity 

directly responsible for the lifecycle management of the applications, and directly interacts with the MEC 

platforms at the different far and near edges. The mm3 interface between the MEO and the MEC platform 

manager allows keeping track of the available MEC platforms and services and to provide the management 

of the application lifecycle (limited to this last purpose in the mm3* interface at ETSI MEC in NFV 

architecture). The mm5 interface between the MEC platform manager and the MEC platform is used to 

perform platform configuration, the application rules and requirements configuration and application 

lifecycle support procedures. The mm6 interface is used to manage virtualized resources. 

The interfaces between NSAP and MEC systems, as well as between MEC systems, are described in more 

detailed in D2.2. 

2.3 Components Specification 

Intelligent orchestrator component: 

The NSAP provides an environment for data-driven, AI/ML-based methods and algorithms that support 

decision-making for the purpose of automating various network management tasks, as described in more 

detail in project Deliverable 3.1 [4].  The intelligent orchestrator component serves as a coordinator of and 

an interface to these intelligent decision-making functions, which can be utilised by the other NSAP 

components and the connect-compute platform.  The component is also anticipated to manage the data 

pipelines that make monitoring data and other data sources available in a consistent manner for the data-

driven methods of the NSAP, but possibly also to components external to the NSAP.  The design of the 

component is still under discussion. 

Multi-Tier Orchestrator:  

It is necessary for coordinating various orchestrators. The idea of the MTO, was implemented from scratch 

for the 5GCity project (https://www.5gcity.eu/). It mediates the triggering of high-level actions such as 

instantiation and monitoring of (network) services and configurations. The MTO includes an Abstraction 

API, used to trigger the required API invocation chains on the different orchestrators when a high-level 

action is performed. It is not a simple abstraction layer that translates high-level API calls to low level 

invocations. It contains a layer of intelligence (forwarding and coordination logic) and adds in the descriptor 

the corresponding VNF to the OSM project. The MTO does not deal directly with descriptors management, 

and does not perform package onboarding, but it is able to handle various orchestrators in the cloud and the 

edge, as is shown in Figure 4. 
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Figure 4 MTO-based scenario 

Slice Manager: 

The Slice Manager is a key component to provide the slicing features to AI@EDGE. In particular, with the 

input of a slice template, this component is able to create slice instances and to control their life cycle. 

Moreover, it manages the deployment of the slices over multiple MEC Systems. The slice template used 

by the slice manager will contain a set of requirements that needs to be mapped by the slice manager over 

the logical sliced network. This is possible to be done by Slice Manager leveraging the control over the 

different NFVOs and VIMs (for the deployment of VNFs of the slice), and the Core and RAN (with the 

ability to allocate network resources to a slice). Currently, a specific task force (i.e. Slicing Task Force) is 

being formed in the project to define and implement the slicing functionalities in AI@EDGE. The task 

force is composed of the different partners with expertise in the different topics connected to slicing (i.e. 

MEC, RAN and CORE). The details on the implementation and the final design of this component will be 

provided by the Slicing Task Force in the future deliverable D4.2. 

MEO, MEAO:  

As stated before, these two elements share certain functionalities in the two ETSI architectures described 

above. Independently from the deployment option, this is a software component that is in the design phase 

to be implemented in the project. It is the core functionality at the MEC system level management. The 

MEO is responsible for the following functions: maintaining an overall view of the MEC system based on 

deployed MEC hosts, and available resources, keeping a record of on-boarded packages; selecting 

appropriate MEC host(s) for application instantiation based on constraints, such as latency, available 

resources, and available services; triggering application instantiation and termination; triggering application 

relocation as needed when supported. Additionally, each MEO also collects the telemetry from the far and 

near edges under its MEC system for orchestration and management purposes and interacts directly with 

the VIM to achieve this purpose. This telemetry could be implemented through message brokers or REST 

APIs. As mentioned before, the MEAO in the ETSI MEC in NFV architecture would perform similar 

functionalities except for the offloading of the onboarding and lifecycle management tasks to the NFVO. 

MEC Platform, MECPM, MECPM-V: 

The MEC Platform has all the functionalities required to run MEC applications on a particular virtualization 

infrastructure and enables them to provide and consume MEC services. For example, such functionalities 

include providing services, offering an environment where the MEC applications can discover, advertise, 

consume, and offer MEC services. The MECPM is responsible for: managing the lifecycle of applications 

including informing the MEO of a relevant application-related event; and providing element management 

functions to the MEC platform. The MECPM also receives virtualized resources, fault reports and 

performance measurements from the virtualization infrastructure manager for further processing. 

This role will be taken by the LightEdge software [5] in the project. LightEdge is a microservice-based 

implementation of the ETSI MEC Architecture. LightEdge is meant to be deployed over a Kubernetes 

cluster inside a dedicated namespace and is released under an APACHE 2.0 License.  

LightEdge consists of the following components:  

• lightedge-runtime, the nexus LightEdge component. This microservice keeps track of the other 

active microservices. Each microservice on bootstrap registers with this component making itself 

available to the rest of the platform. 
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• lightedge-rniservice-mananger, the microservice implementing the Radio Network Information 

Service (RNIS). Together with 5G-EmPOWER it allows MEC apps to obtain information about 

the RAN. 

Among its Top-Level features are: 

• Designed to natively run in a Kubernetes environment 

• Supports opensource and commercial LTE eNodeBs and EPCs 

• Implements standard ETSI MEC service interface. 

 

VIM:  

This functional block is responsible for allocating, managing, and releasing virtualized (compute, storage, 

and networking) resources of the virtualization infrastructure; preparing the virtualization infrastructure to 

run a software image. In the AI@EDGE project, Kubernetes performs the role of VIM. Kubernetes is a 

container orchestration system for automating application deployment, scaling and management. In this 

sense, the deployment designed envisions that each MEC system will be part of the same Kubernetes 

clusters, and that therefore all MEC platforms of all edges (near and far) in the same MEC system (and 

therefore managed by the same MEO/MEAO), are part of the same Kubernetes cluster, each of them 

deployed on a worker node. Recent versions of Kubernetes have brought in many enhancements that help 

deploy CNFs (Cloud-Native containerized Network Functions). The Kubernetes features/plugins that the 

CNF will benefit from are CPU Manager, Huge Pages, Topology Manager, Multus CNI, SRIOV CNI, 

SRIOV Network device plugin for SRIOV/DPDK. 
 

NFVO + VNFM: 

This functional block is responsible in the ETSI MEC in NFV architecture for managing the network 

services' lifecycle, including the MEC app instances, treating each MEC app instance as a VNF instance. 

The VNFM, by one side, oversees handling the lifecycle of the MEC platform using standard NFV LCM 

procedures, and for the other, managing the lifecycle of the MEC apps, treating each MEC app instance as 

a VNF instance. For instance, given the wide adoption of OSM, this software could provide the 

functionalities of both NFVO and VNFM if the MEAO is on top as a software layer telling OSM what to 

do and controlling the synchronization across MEC systems. OSM is an ETSI-hosted initiative to develop 

an Open Source NFV Management and Orchestration (MANO) software stack aligned with ETSI NFV [6]. 

OSM supports container-based services. The OSM approach aims to minimize integration efforts. It is 

capable of modelling and automating the full lifecycle of Network Functions [7]. 

 

2.4 RoadMap and Features 

The roadmap of the connect-compute platform has been divided into four main phases that aim to evolve 

the platform from the initial building blocks of the consortium to a whole vision including the requirements 

and capabilities offered by the AI@EDGE project.  

These four phases have a total duration of 30 months. However, the length of the phases is not the same. 

The initial phase (phase 1) is the longest one with a total duration of 12 months given the need of the 

consortium to properly perform a requirement elicitation process and provide an architectural design that 

covers the identified requirements. The rest of the phases, by contrast, have a duration of 6 months each. 
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The main difference between the two first and the two last phases is the specific cellular network and local 

breakout (LBO) technologies used at the various MEC hosts. The first two will use 4G/5G NSA, with the 

SGW+PGW at the MEC hosts, while the last two will use 5G NSA/5G SA, with SMF + UPF deployed at 

the MEC hosts. Nevertheless, it is worth highlighting that the roadmap regarding the rest of the features to 

be included in the CCP, is independent of NSA/SA implementation and does not suffer changes when 

passing from phase 2 to phase 3. 

Figure 5 presents the phases and some features determined for each one. Although this plan was structured 

at the beginning of the project, its status is periodically revised and modified if needed to better suit the 

requirements to be fulfilled. Below we provide more details about the requirements incorporated in the 

platform during the lifetime of the project. 

 

 

Figure 5 Roadmap and features 

Phase 1. This phase will be based on 4G/5G NSA with SGW+PGW LBO integrated with the MEC host. 

From the MEC system perspective, simple MEC applications will be pre-deployed at all MEC sites without 

providing migration or onboarding features. Moreover, a preliminary integration of serverless basic 

functionalities will be considered. This first phase will not include hardware acceleration capabilities but, 

however, parallel in-lab research and development on GPU and FPGAs is being performed. Concerning the 

RAN, a preliminary version of the transport layer Wi-Fi and cellular aggregation solution will be 

incorporated. In addition, an initial definition of E2/A1 interfaces and services in the near-RT and non-RT 

RICs is being considered. The orchestration capabilities, management components, and the NSAP are being 

investigated in parallel to the networking/MEC components. 

Phase 2. This phase aims to be an evolution from phase 1 providing 5G NSA connectivity with SGW+PGW 

LBO at the MEC hosts. On that evolutionary road, the serverless and function as service functionalities will 

also be enhanced, and the MEC applications are expected to be deployed as required. From the RAN 

perspective, the first subset of E2 messages and services will be implemented. Moreover, a more complete 

version of the multi-connectivity part will be integrated in the testbed. In addition, initial solutions for 

supporting 5G network slicing will be developed and made available at the end of Phase 2. 

Phase 3. In this phase it is expected to happen the main change in terms of radio access technology, having 

an evolution from 5G NSA to 5G SA with SMF/UPF LBO by the end of such a phase. This will represent 

the initial testing phase for supporting slicing capabilities between the gNBs used in the project to the 

5GCore. At this stage, MEC application orchestration capabilities will be incorporated in the platform 

following stateless approaches and exposing the necessary APIs between the NSAP and the MEC 

orchestrator. Moreover, the MEC-to-MEC interfaces will have a preliminary description. On the other hand, 

the serverless platform will continue extending functionalities in order to provision Serverless Functions to 

the MEC APPs and AIF and provide support to additional event sources such as message-based ones, as it 

is detailed in the next sections. From the multi-connectivity perspective, the consortium is planning to 

integrate PDCP features on a small-scale prototype.  
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Phase 4. This last phase will maintain the same radio access technology and local breakout as the previous 

one, namely 5G SA with SMF+UPF LBO. Concerning the connect-compute platform the MEC orchestrator 

will incorporate more mature features and will allow the migration of applications across various sites, with 

the implementation of the MEC-to-MEC interface. The final version of the serverless platform will be 

consolidated and incorporated in the CCP. With respect to the radio and core networks, final features will 

be added and tested in the form of S-NSSAI support pre-established in the network. The MEC hosts will 

count at this phase with hardware acceleration features across the various tiers, which could be used by the 

orchestrator to instantiate the applications expressing such requirements. At this stage, the E2/A1 interfaces 

will be finalized and tested between the near-RT and the non-RT RIC. Finally, the cross-layer solutions and 

experimental testing will be also considered from the multi-connectivity perspective. 

2.5 Provisioning of Integration Testbed 

The Integration Testbed hosted in the FBK premises is a research testbed that includes both computational 

(Intel NUCs) and radio resources (a mix of Ettus B210/X310 boards with the associated computing nodes). 

The entire testbed is designed with cloud-native principles and includes non-3GPP technologies such as 

Wi-Fi. This testbed has been conceived for being used for pre-integration of WP4 results and for providing 

a playground for testing the integrated connect-compute platform in various configurations and scenarios. 

The various components of the connect-compute platform, developed by all WP4 tasks, will be deployed 

in the testbed as soon as they become available and integrated with existing infrastructure (described in 

section 2.5.2). 

Testbed Roadmap 

Two main set-ups characterize the Integration Testbed Roadmap. 

• Integration Phase 1 and 2: 4G/5G Non-standalone (NSA) Integration Testbed set-up,  

o deploying gNodeB/eNodeB,  

o 5G/4G User Equipment (UE), 

o 4G Evolved Packet Core (EPC). 

• Integration Phase 3 and 4: 5G Standalone (SA) Integration Testbed set-up, 

o deploying 5G gNodeB, 

o 5G UEs, 

o 5G Core. 

 

Integration Phases 1 and 2: 4G/5G NSA Integration Testbed set-up 

The two phases differ on the adopted radio access and core network technologies and how the IP packets 

are routed to the MEC applications. Steering traffic to/from MEC applications is achieved by configuring 

the MEC’s local Domain Name System (DNS) and the MEC host’s data plane accordingly. How the data 

plane is managed depends on the point where the MEC host is installed in the 4G architecture. In a 4G/5G 

NSA many choices are possible, but all in all they can be condensed down into some base scenarios, i.e. 

distributed EPC, distributed service/packet data network gateways (S/PGW). 

In Phase 1, the SGW and PGW entities are deployed at the edge site, whereas the control plane functions 

such as the Mobility Management Entity (MME) and Home Subscriber Service (HSS) are located at the 

operator’s core site. The MEC host’s data plane connects to the PGW over the SGi interface. 
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The SGW and PGW run as VNFs on the NFV platform within a single hardware component provided by 

ATH. The local SGW selection is performed by the central MME according to the 3GPP standard DNS 

procedures and based on the Tracking Area Code (TAC) of the radio to which the UE attaches. The 5G-

NSA architecture implemented in Phase 1 is depicted in Figure 6. 

 

 

Figure 6 Integration Testbed Phase 1 - 4G/5G NSA 

 

Integration Phases 3+4: 5G SA Integration Testbed set-up 

In the 5G SA deployment, the 5G Core Network provides the means to select traffic to be routed to the 

applications in the local data network. UPFs can be seen as a distributed and configurable data plane from 

the MEC system perspective. The introduction of a local UPF by the edge site allows to terminate a PDU 

Session locally and redirect the traffic to the Local Data Network and MEC Apps. 

The 5G SA architecture of the testbed is depicted in the following figure: 
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Figure 7 Integration Testbed Phase 2 - 5G NSA 

 

The integration testbed roadmap is synchronized with the availability of the releases of the SRS software 

radio solutions as follows:  

 

 

Figure 8 Integration testbed roadmap 

2.6 Testbed components 

RADIO functionalities and equipment 

The testbed will rely on srsRAN, the SRS's free and open-source 4G and 5G software radio suite. srsRAN 

features both UE and eNodeB/gNodeB applications and can be used with third-party core network solutions 

to build complete end-to-end mobile wireless networks. 

The srsRAN suite currently includes (included in the testbed phase 1): 
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• srsUE: a full-stack 4G and 5G NSA UE application 

• srsENB: a full-stack 4G eNodeB and 5G NSA gNodeB application 

The full-stack 5G SA gNodeB application (srsGNB) is expected to be available in 2022 and will be 

incorporated in the phase 2 of the testbed. 

From HW point of view the testbed will rely on: 

• 2x ETTUS USRP B210 [8], a fully integrated, single-board, Universal Software Radio Peripheral 

(USRP™) platform with continuous frequency coverage from 70 MHz – 6 GHz 

• 2x ETTUS USRP X310 [9] a high-performance, scalable software-defined radio (SDR) platform 

for designing and deploying next generation wireless communications systems. 

• The testbed will also deploy a Wifi OpenWRT Access Point with the purpose of deploying the 

multi-connectivity set-up. 

Core network functionalities and equipment 

ATH provides the core network functions in 4G/5G-NSA for Phase 1 and 5G SA for Phase 2 as a “network 

in a box” solution, hence running as a virtualized software over common-off-the-shelf hardware servers. 

In the 4G/5G NSA version, included in the Testbed Phase 1, the box implements a local PGW/SGW that 

steers the traffic to the MEC host, and a full EPC. The EPC implements the standard 3GPP LTE network 

elements as follows: MME for mobility management, HSS for access and authentication procedures, Policy 

and Charging Rules Function (PCRF) for policy and charging control, PGW for providing access to Packet 

Data Networks, SGW for anchoring PDU sessions and DNS to resolve the IP address which is to be used 

for the packet gateway.  

It will then be upgraded during the Testbed Phase 2, to a 5G SA implementation, with a local UPF, that 

steers the traffic to the MEC host, and a full 5G core network (5GC). The 5GC implements as well standard 

3GPP 5G network elements as follows: the Access and Mobility Management Function (AMF) for mobility 

management, Authentication Server Function (AUSF) for access and authentication procedures, Policy 

Control Function (PCF) for policy and charging control, UPF for the data plane, Session Management 

Function (SMF) for managing the data plane sessions, Network Slice Selection Function (NSSF) for 

managing network slices, Network function Repository Function (NRF) for network function discovery. 

Such functionalities are and will be instantiated in a Dell 240 server, with VMware as hypervisor. The HW 

has the following technical features: 

• Intel Xeon CPU E-2146G 3.5 GHz 6C/12T  

• 32 GB RAM  

• x 1 TB 7.2 K RPM SATA 6 Gbps 512n 3.5in Cabled Hard Drive 

• x 1 Gb Ethernet 

Edge Host 

The edge host contains the virtualisation infrastructure which provides compute, storage, and network 

resources, for the purpose of running mobile edge applications: 

• VIM - the chosen virtualization infrastructure is container-based, relying on a Kubernetes 

deployment. Kubernetes, also known as K8s, is an open-source system for automating deployment, 

scaling, and management of containerized applications. 
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• MECPM – LightEdge [10, 11] 

• Serverless Platform – Nuclio [12] Platform has been chosen as the FaaS platform for the 

integration testbed. 

NFVO (edge host orchestration) 

A server is deployed with an Open Source MANO (OSM) over Kubernetes installation that is used for the 

Edge Host deployment and management. 

Testbed first set up 

The first testbed set-up includes basic functionalities: one Radio Node and UE, one Edge Host and the ATH 

Box, with the 4G/5G NSA based architecture. The set-up is depicted in the figure: 

 

 

Figure 9 Testbed first setup 

2.7 Distributed testbed with ICCS site 

To allow conducting early tests of the hardware acceleration solutions, we plan to connect the testbed-

cluster at ICCS premises with the integration testbed with a VPN connection. The cluster at ICCS will act 

as an Edge site that will be integrated with the connect-compute platform deployed in the main Integration 

Testbed at the FBK site, thus allowing developing and testing the acceleration solutions of AI@EDGE. 

A detailed description of the testbed is given in section 0. 
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3. Serverless Platform 

In AI@EDGE we consider Function as a Service (FaaS) based serverless computing platforms. FaaS 

platforms deploy event-driven, stateless, and often short-lived functions (i.e., stateless execution of remote 

functions). Computation logic is written as small pieces of code that respond to various set of events. The 

Cloud Native Computing Foundation (CNCF) states that “Serverless computing refers to the concept of 

building and running applications that do not require server management. It describes a finer-grained 

deployment model where applications, bundled as one or more functions, are uploaded to a platform and 

then executed, scaled, and billed in response to the exact demand needed at the moment.” [13] There are 

many examples of serverless platforms: AWS Lambda, Azure Functions, IBM Cloud Functions based on 

Apache OpenWhisk, Google Cloud Functions, Huawei Function Stage and Function Graph, Kubeless, 

iron.io, function, fission, Nuclio. 

The serverless paradigm has various advantages. First, the required amount of resources to a particular 

application/task is committed: we can have as many instances as necessary of serverless function, but only 

when they are needed. Resources are utilized for just the time needed to execute an invoked function. When 

there is no demand for the functions, the cost of used resources goes near zero, but it scales to as many 

instances (with some limits) as needed to meet an increased traffic demand. The drawback of this approach 

is the inherent cold start delay. Various approaches exist to minimize it, such as the deployment of 

ephemeral instances of each function as necessary (Caching) and generic containers, and they depend on 

the platform design. 

The CNCF identifies the following key elements of a FaaS solution: 

• Event sources – trigger or stream events into one or more function instances 

• Function instances – a single function/microservice, that can be scaled with demand 

• FaaS Controller – deploy, control and monitor function instances and their sources 

• Platform services – general cluster or cloud services used by the FaaS solution (sometimes referred 

to as Backend-as-a-Service) 

The relationship between these elements is shown in the diagram below: 

 

 

Figure 10 FaaS solution key elements (source: CNCF White Paper) 

Open-Source platforms provide a portable way to develop serverless applications and reduce platform lock-

in. Popular serverless frameworks rely on Kubernetes APIs to orchestrate and manage the serverless 
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functions. Often, the FaaS Platform itself is deployed as Kubernetes containers. The typical approach is to 

extend and provide the Custom Resource Definition (CRD) features necessary to create and deploy the 

container pods (group of containers). Functions can run from anywhere on any machine, as long as they are 

still in communication with the rest of the application. Serverless frameworks leverage Kubernetes network 

model to export services (cluster of function pods) and to route requests to specific functions. They depend 

primarily on Kubernetes for: 

• Configuration management of containers and pods.  

• Pod scheduling and service discovery. 

• Update roll-outs for functions; and 

• Replication management. 

When using a FaaS platform, applications should be designed using serverless principles. Typically, 

serverless functions should be used when the workload is: 

• Asynchronous, concurrent, easy to parallelize into independent units of work 

• Infrequent or has sporadic demand, with large, unpredictable variance in scaling requirements 

• Stateless, ephemeral, without a significant need for instantaneous cold start time 

• Highly dynamic in terms of changing business requirements that drive a need for accelerated 

developer velocity 

Resource allocation, communication of user data, and the execution of functions are abstracted from the 

developer. The allocation of infrastructure resources and the execution of the code is done dynamically, 

typically, in on-demand instantiated containers. 

Serverless functions are Event-driven. Each Function performs one action only triggered by events 

originating from multiple heterogeneous event sources such as databases, message queues, or streaming 

platforms. The Functions can be invoked from different event sources depending on the different use-cases. 

Event sources can be grouped in the following way: 

• Synchronous Request (Req/Rep), e.g., HTTP Request, gRPC call. The client issues a request and 

waits for an immediate response. This is a blocking call. 

• Asynchronous Message Queue Request (Pub/Sub), e.g., RabbitMQ, AWS SNS, MQTT, Email, 

Object (S3) change, scheduled events like CRON jobs. The event is associated with messages 

published to an Exchange and distributed to subscribers. 

• Message/Record Streams: e.g., Kafka, AWS Kinesis, AWS DynamoDB Streams, Database CDC. 

A stream can be produced from messages, database updates (journal), or files (e.g., CSV, JSON, 

Parquet) 

• Batch Jobs, e.g., ETL jobs, distributed deep learning, HPC simulation 
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Figure 11 Event sources types (source: CNCF White Paper) 

Functions can be implemented in any programming language among those supported by the platform. They 

can be organized in processing pipelines (depending on the platform) decoupling the orchestration of the 

dataflow between functions from the choice of language. (e.g., Kubeflow). 

The lifecycle of a serverless function begins providing the function code and its specifications file 

(containing specifications and metadata). Code and specification are then compiled, and an artifact is 

generated (a code binary, package, or container image). Artifacts can be deployed on a cluster with a 

controller entity which oversees monitoring the functions and scaling the number of function instances 

based on the events traffic and/or load on the instances. 

The following actions that define and control function lifecycle can be defined: 

• Build – create a new function from its spec and code so that it can be deployed on the cluster 

• Deploy 

• Execute/Invoke - Invoke a specific function directly, instead of through its event source 

• Event Source association - Connect a function with an event source 

• Get - Returns the function metadata and spec 

• Update - Modify the latest version of a function 

• Delete - Deletes a function, could delete a specific version or the function with all its versions 

3.1 Integration of the Serverless Platform in the Connect-compute platform 

The integration of the Serverless Platform in the Connect-compute platform will consider the ETSI MEC 

reference platform for the Edge. The FaaS platform provisioning Serverless Functions (SF) can be 

deployed as a CNF as part of the Edge Host. SF are event-driven, stateless, cloud-native (Auto-Scaling, 

Design for Failure, Modularity, APIs, Automation) functions. 
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Deployment of the SF could be triggered by the MECP Manager using e.g., FaaS platform APIs. 

SFs can be considered as MEC Apps. As such they: 

• could be deployed by the MECP Manager (MECPM) 

• can be exposed as MEC Services (when triggered by HTTP) 

• can work “stand alone” as MEC Apps but triggered by events 

• can consume MEC Services (in event subscription modality) 

Multiple Event Sources can trigger the same SF. An SF may be set up to be triggered by an Event Source 

even if that is not present (in the same MEC host). An Event Source can be deployed as a MEC App on the 

MEC host. 

The following figure shows various Serverless Platform elements in blue and light blue. 

 

Figure 12 FaaS Platform Integration in ETSI MEC proposed by AI@EDGE 

Building the function is the first step of the lifecycle of a serverless function, which starts by providing the 

function code and its specifications file (containing specifications and metadata). The code and 

specification can be compiled (in a code binary, package, or container image) and stored in a registry. This 

task can be performed leveraging on a Staging Platform, as shown in the figure below: 
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Figure 13 Example of Serverless Function build phase,  

the Staging Platform can be an instance of the Serverless Platform used for building the function. 

Then, the serverless function can be then deployed in the MEC host. The figure below shows how the 

deployment can leverage a MECPM add-on that is specific to the chosen FaaS Platform. 

 

Figure 14 Serverless Function Deployment showing the interaction between the MECPM and the Serverless Platform  

For the integration of the serverless platform in the connect compute platform, our design choice was to 

add a layer of abstraction from the actual serverless platform of choice and keep as much as possible isolated 

the specificities of the actual chosen serverless platform through a modular approach. As far as it regards 

the Serverless Platform selection, our choice was to use the Nuclio Serverless Platform [14] Community 

Edition. The main reason of this choice is for being a Lightweight Solution (with a portability across low-

power devices, laptops, edge and on-prem clusters, and public clouds) with interesting real-time processing 

capabilities. Besides it natively integrates with a large variety of data sources (data bindings) and triggers, 
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and supports various programming languages, e.g., Python, Go, and Java. It provides REST APIs for 

deployment and allows to specify function specs in YAML file. 

 



 

 

D4.1 Design and initial prototype of the AI@EDGE connect-

compute platform  

 

AI@EDGE (H2020-ICT-52-2020) 35 

 

4. Disaggregated Radio Access 

The O-RAN specification is an initiative promoted by the O-RAN Alliance which aims to standardize the 

architecture and procedures in virtualized RAN environments, focusing on AI-powered RAN control to 

fulfill SLA. In this sense, the AI@EDGE concept of closed-loop automations naturally fits within the O-

RAN paradigm, where the NSAP implements a subset of functionalities of the Service Management and 

Orchestration (SMO) layer and the Connect-Compute platform hosts other O-RAN functions and NFs like 

the Near-RT RIC, the CUs and the DUs, as is done in the O-Cloud platform. In this Section we will 

introduce the architecture and functionalities of the RAN Intelligent Controllers present in the O-RAN 

architecture, the non-Real Time and the near Real Time, with focus on the methods that enable intelligent 

network automation.  

4.1 Provisioning of Integration Testbed 

The non-Real Time RIC (nonRT-RIC) is a core element of the SMO layer which enables non-real time 

control and optimization of RAN components and resources. Figure 15 shows the service-based view of 

the non-RT RIC as described in the O-RAN specification [15]. As shown in Figure 15, although the main 

functionality is to realize the A1 interface termination, the non-RT RIC also exposes different SMO 

functions to the rAPPs (e.g. O1 and O2 interfaces), which are applications that run on the non-RT RIC and 

implement the intelligent operations. In AI@EDGE we will focus on A1-P and AI-EI interfaces, i.e. Policy 

management and Enrichment Information (EI) functionalities, which provide the needed subset of 

mechanisms to manage closed-loop automations at the near-RT RIC using xAPPs. Nevertheless, other SMO 

functionalities, like xAPPs onboarding, data and data exposure could be partially developed and 

demonstrated during the project if available in the different envisioned realizations.  

 

Figure 15 O-RAN’s Non-Real Time RIC architecture service-based view [O-RAN.WG2.Non-RT-RIC-ARCH-TR-v01.01] 

Figure 16 shows the non-RT RIC architecture being developed. As aforementioned, the focus will be on 

implementing the components and interfaces that are specific from the non-RT RIC, i.e., the Policy 
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Management and Enrichment Information Coordinator and the A1-P and A1-EI, respectively. To facilitate 

the integration with different near-RT RIC implementations, i.e., O-RAN compliant but also O-RAN non-

compliant, it is envisioned that the A1-P and A1-EI adaptors will do the needed adaptations to vendor-

specific implementations and interfaces (denoted as A1-P* and A1-EI* in the figure). As shown in Figure 

16, Policy- and EI-related functions will be exposed to rAPPs via the R1* interface (i.e., an adaptation or 

implementation of a subset of functionalities of O-RAN’s R1 interface). The Policy Management 

component of the non-RT RIC manages the life cycle of the policies, each of them comprehending one 

scope and multiple statements, which are defined as follows [16]: 

• The scope of the policy defines what the statements are to be applied on (i.e., UE, groups of UEs, 

slices, QoS flows or cells).  

• The statement defines the objective or goal of a policy (e.g. QoS or QoE targets) and how to use 

the RAN resources to achieve it.  

Regarding Enrichment information, the EI coordinator will create EI jobs to serve the data available at the 

SMO level according to rAPPs and near-RT RIC/xAPPs demands. This data might include aggregated RAN 

data obtained from near-RT RIC and E2 nodes, but also external data obtained from applications or other 

network elements. Finally, the Figure shows how the rAPPs might use other SMO functions, like the O1 or 

O2 interfaces (e.g. to onboard xAPPs or deploy AI/ML models). 

 

 

Figure 16 AI@EDGE Non-Real Time RIC architecture and interfaces to near-RT RIC 

4.1.1 Roadmap 

The development roadmap is divided into two phases, (i) implementation of the Policy Management and 

A1-P interface and (ii) implementation of the EI Coordinator and the A1-EI interface. The implementation 

will be based on O-RAN specification and validated towards an O-RAN compliant near-RT RIC (e.g. the 

O-RAN simulator available in the O-RAN Software Community [17]). 
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4.1.2 Integration 

Apart from the validation via O-RAN's near-RT RIC simulator, we will work on the integration with two 

near-RT RICs from different vendors. The first one, which is a commercial one called dRAX and developed 

by Accelleran [18], will be used to validate different non-RT RIC and SMO features for enabling closed-

loop automations using simple rAPPs and xAPPs created for this purpose. In parallel, we will work on the 

integration with 5G-EmPOWER, which is the open-source near-RT RIC selected for the AI@EDGE 

project. In this case, the scope will be to demonstrate a subset of A1 functionalities to manage xAPPs related 

to the experiments and testbeds of the project.  

4.2 Near-Real Time RIC 

The Near Real Time RAN Intelligent Controller (near-RT-RIC) is a logical function pioneered by O-RAN 

Alliance to enable RAN programmability and service optimization. With an open architecture, near real 

time RIC allows on-boarding of RAN control applications for near-real time fine-grain performance 

optimization and policy tuning. ML-based algorithms are implemented as external applications, i.e., xApps, 

deployed on the near real-time RIC. They can deliver specific services such as inference, classification, and 

prediction pipelines to optimize the per-user quality of experience, controlling load balancing and handover 

processes, or the scheduling and beamforming design [19]. In addition to the O-RAN near-RT-RIC 

reference Open-source implementation, many others exists. For example, the FlexRIC [20] RAN Intelligent 

Controller, which interfaces with the OAI radio software stack with the O-RAN defined E2 interface to 

monitor and control the RAN in real time. FlexRIC’s built in service models can easily be customized to 

support diverse 5G use cases. In the scope of this project 5G-EmPOWER will be used as near-Real Time 

RIC in the AI@EDGE platform. The detailed description and supported features will be provided in the 

following sections. 

4.2.1 5G Empower 

5G-EmPOWER is a lightweight state of the art RAN Intelligent Controller. Its resilient architecture enables 

the agile development of innovative services across multi-tenancy radio equipment. A high-level view of 

5G-EmPOWER is depicted in Figure 17. The separation of control and data planes in 5G-EmPOWER is 

achieved via two main components i.e., a centralized controller and a set of agents. The centralized 

controller acts as 5G-EmPOWER Operating System (OS) with a global network view of all the underlying 

infrastructure and its functionalities. 5G-EmPOWER OS sends the control directives to 5G-EmPOWER 

agents via OpenEmpower communication protocols. 5G-EmPOWER agent manages the LTE user plane. 

It consists of the platform independent 5G-EmPOWER agent itself and the platform dependent Wrapper. 

In addition, 5G-EmPOWER provides an SDK environment for network application developers to write 

their own applications and services as empowerApps. 
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Figure 17 High-level view of the 5G-EmPOWER architecture. 

4.2.2 Roadmap 

We plan to carry out the integration of the RAN Controller in two Phases, i) In the first phase which 

corresponds to Phase 2 timelines mentioned in section 2.4, the 5G-EmPOWER interface with the RAN will 

be used to support monitoring capabilities and metrics collection. ii). The Non-real time RIC policy 

translation will be integrated in 5G-EmPOWER. The timeline to add this feature in the testbed fully 

integrated and tested corresponds to phase 4 mentioned in section 2.4. 

4.2.3 Integration 

The integration of 5G-EmPOWER in the connect and compute platform testbed will be carried out in two 

stages. In the first stage, RAN monitoring capabilities will be demonstrated over 4G/5G- NSA RAN 

elements in line with the project phase 2 timelines and goals outlined in section 2.4. In this stage, the 

communication between the RAN Controller and the RAN will happen through the OpenEmpower 

protocol. In the second stage, which corresponds to phase 3 and phase 4 timelines and goals, 5G-

EmPOWER integration to non-real time RIC interface will be established. 5G-EmPOWER RAN 

monitoring capabilities will be extended to 5G-SA gNBs, but it depends upon the gNB ability to 

communicate with 5G-EmPOWER Operating System.   

In addition to above mentioned points, the integration of the connect and compute platform with Open-

Source Near-Real time RIC projects (e.g., O-RAN Near Real Time RIC, FlexRIC) will be studied in 

parallel. However this option depends upon the availability of their respective stable releases and Inter-

Operability with the Connect and Compute Platform in the next future. 

4.3 Subset of functionalities of A1 Interface of relevant AI@EDGE 

The non-RT RIC uses A1 interface to manage near-RT RIC policies and to provide enrichment information 

[21]. These functionalities have a direct impact on the optimizations performed by the xAPPs.  Table 1and 
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Table 2 describe the minimum subset of A1 procedures needed to implement them, while Table 3 details 

some additional/optional O-RAN procedures that could be also involved. 

Table 1 Subset of A1-P procedures needed for enabling policy management 

Procedure Producer   Description 
Query Policy Types Non-RT RIC Queries the policy types present at the near-RT RIC 

Query Policy Type  Non-RT RIC Queries the description of a specific policy type 

Create Policy Non-RT RIC Creates a policy in the near-RT RIC related to a specific policy type/xAPP 

Delete Policy Non-RT RIC Deletes a policy in the near-RT RIC related to a specific policy type/xAPP 

Update policy Non-RT RIC Updates a policy in the near-RT RIC related to a specific policy type/xAPP 

 

Table 2 Subset of A1-EI procedures needed for providing enrichment information 

Procedure Producer Description 
Query EI Types Near-RT RIC Queries the available EI types present at the non-RT RIC 

Query EI Types Near-RT RIC Queries the description of a specific EI type 

Create EI job Near-RT RIC Creates a policy in the near-RT RIC related to a specific policy type/xAPP 

Deliver EI job result Non-RT RIC Delivers the result of a EI job to the non-RT RIC 

 

Table 3 Additional/Optional O-RAN procedures involved in policy/EI management 

Procedure Producer Description 
xAPP onboarding SMO Deploys a specific xAPP in the near-RT RIC (O2 interface) 

Create Policy Type SMO Creates a specific policy type in the near-RT RIC/xAPP (O1 interface) 

RAN data delivery Near-RT RIC, E2 nodes Delivers RAN data to the SMO (O1 interface) 

External data delivery Ext. component Delivers external data to the SMO (interface not defined) 

 

More details on the workflows between non-RT RIC and near-RT RIC related to the A1 interface can be 

found in D2.2. 

4.4 RAN Controller – RAN interface functionalities 

In 5G-Empower, OpenEmpower Communication protocol allows remote management of RAN elements. 

The OpenEmpower protocol operates in a way analogous to the E2 Interface to control RAN elements. 5G-

Empower communication protocol is built around three event types, described below 

• Single Events: Standalone events requested by Operating Systems and notified back immediately 

by the agent  

• Scheduled Events: Initiated by the Operating System and then executed by the agent periodically. 

• Triggered Events: Instructions to activate/deactivate a control plane functionality based on 

parametric changes at the agent.  

More details with elaborated descriptions for reference are defined in Table 4. 

Table 4 Actions Supported by 5G-EmPOWER Communication Protocol [22] 

Operation Event Type Description 
Hello Single Periodic heartbeat message sent by the eNB to the operating system 
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Handover Single Triggers an X2 handover. The message specifies the UE RNTI and the target eNB/Cell. 
MAC Reports Scheduled/Single Collects the PRB utilization statistics from the MAC scheduler (uplink/downlink) 
UE Reports Triggered Triggers a message when UEs attach/detach from an eNB 

RRC 
Measurements 

Triggered Instucturs a UE to start RSRP/RSRQ measurements on one or more channels and with certain 
internal 
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5. Data-driven Service Lifecycle for AI-enabled Applications 

5.1 Introduction 

The AI@EDGE system supports the orchestration and management of Artificial Intelligence Functions 

(AIFs). The AIFs represent an abstraction of software modules that implement Machine Learning (ML) 

models and expose various interfaces dedicated to (i) the input/output of data; and (ii) the AIF configuration. 

The AIFs implement the intelligence of the system and can support both network automation and user 

applications at the edge. AIFs are further described in D2.1 and in D3.1, where NSAP AIFs are described. 

Additionally, each UC will produce its own AIFs that will be specific for each scenario. These are 

introduced in D5.1.  

In D3.1, a Reference Model for AIFs has been introduced (Figure 26), representing the concepts, 

functionalities, and interfaces for a generic AIF. The AIF Reference Model intends to provide a 

consolidated view of all information elements present as part of the interface specifications. This model is 

a tool to check consistency between information elements as well as to provide a logical relationship 

between information elements across different interfaces. Further details on the AIF reference model and 

its interfaces can be found in D2.1 and D3.1. 

 

Figure 18 AIF Reference model [D2.1, D3.1] 

AIF’s Interfaces: 

• if1: (re)configuration 
• if2: model parameters exchange 
• if3: data exchange 

• if4: reconfiguration of other entities 

 

 

5.2 End-to-end Decentralized and Distributed Orchestration 

In D2.2, we described the AIFs orchestration part workflow from a functional point of view, while here, 

we will describe all the phases and methods used to support these features more accurately. 
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Figure 19 AIF lifecycle 

As a reminder of D2.2, this is the AIF lifecycle. There are three main phases. In the first one, an AIF graph 

can be defined and validated. The next one is when the willing to deploy a chosen AIF graph from those 

already defined and validated and perform the AIFs parameters auto-configuration when the “auto-config” 

parameter has been set to “True”.  And the final one is the generation of the descriptor files and the whole 

deployment part from the multi-tier Orchestrator after receiving the files.  

During the validation stage, at a high level it is a question of validating both the semantics of the AIF graph 

built upstream using the user's inputs and potentially ensuring the cleanliness of the associated data for the 

construction of the AIFs deployed at the end on the connect-compute platform.  

Then, once the graph is chosen, each AIF must be configured with some parameters (or hyper-parameters 

in the case of ML functions) in order to have the best possible results.  

Moreover, once the parameters are settled and saved, we will create all the files we need to be able to deploy 

the complete application into the orchestrator cluster. For that, we will use the tool named Helm to generate 

all the files and then use them to deploy the application.  

This section will talk about what is concretely an AIF graph and then the 3 main phases. 
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5.2.1 AIF graph  

 

Figure 20 Example of AIF Graph 

Because the system needs to know what an input or output is, we need to have all the information in one 

file. To have a better view, we can represent this file as a graph. The graph in Figure 21 is an example of 

how to represent this information. It shows several objects: coloured nodes, actors, oriented links and non-

oriented links. This is a non-exhaustive list of elements that can compose the graph. Let us take a deeper 

look into these elements. 

First, we have the colored nodes. These represents the main part of the graph: the AIF and their interactions. 

Each colored node has at least: a type, that will define the type and the allowed properties of the node and 

a name, that will distinguish the node from the others. 

There are several types of nodes:  

• AIF: a node of this type will define an AIF. It can have several properties which will override all 

the default options of the AIF we can find into the AIF graph catalog. An AIF can be connected by 

an oriented link with a data-connector or another AIF to know if it's an input or an output. It can 

also have be connected by a non-oriented link with one (or more) ReadyGroup node because it is 

not relevant to it. 
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• ReadyGroup: at least two nodes (AIF or DataConnector) need to be wired to this type of node. It 

must have at least the property "Readiness" with a numerical value in seconds. This will add a 

condition that all the nodes linked to that node have to be ready as one under the readiness value. 

• DataConnector: this type of node will simply define a connection to an external data connector. It 

can be a dataset, a database, a message queue, etc.  It always has to be linked at an AIF node and 

be connected by oriented links as an input or an output. 

An actor can at any moment modify an AIF Graph. An actor can be another AIF who decide itself to modify 

the graph for some needs or a human. Further in the project, we can have more node types and actors. 

5.2.2 AIF lifecycle phases 

Phase 1: AIF graph and data validation  

Technically, the AIF graph will be a structured file (XML, JSON, YAML, ...). In the first iteration, we will 

do a simple parsing validation. Each type of node has a fixed list of properties and a type of value associated 

with that property. If a property is not unknown or an associated value is not the right type, an error will be 

raised. 

Also, nodes may have properties that include links. These may point to a local access folder, so in this case 

the validation process has to verify if the application has the rights to access that specific folder. The link 

can also be an URI, in which case the URI will be tested, and the validation process will try to download 

the file (in the case of a dataset) or access it with the given token or credentials (in the case of a database or 

message queue).  

Once the whole graph is validated, it will be stored in a dedicated database from which an actor will be able 

to fetch them all.  

Phase 2: AIFs deployment and configuration 

For this phase, we need to have at least one graph stored in the dedicated database for AIF graphs. An actor 

can select any graph to deploy and launch the deployment process. For each AIF node, if it has the property 

"auto-config" equal to "True", it will pass through the parameter auto-configuration process. 

Parameters auto-configuration process: 

The performance of many algorithms in the field of machine learning or AI, in general, depends on tuned 

hyperparameter configurations [23]. Especially recent deep neural networks crucially depend on a wide 

range of hyperparameter choices about the neural network’s architecture, regularization, and optimization 

[24]. Many research directions show a tendency towards increasingly complex algorithms with more and 

more hyperparameters [25]. Thus, the optimization of algorithm hyper-parameters (HPO) is crucial for 

achieving peak performance.  

This part proposes a cheap approach to infer the best (hyper-)parameters configuration of an AIF. This 

solution is based on Meta-learning. The aim is to learn the relationship between task’s meta-features and 

their optimal configurations by building a meta-model that recommends the configurations of a new task 

given its meta-features. The remainder of this part is structured as follows. First, we discuss background on 

(hyper-)parameter optimization methods paying particular attention to Blackbox model-based methods and 

meta-learning. The last paragraph will focus on our method to perform (hyper-)parameters optimization.   

In general, every Blackbox optimization method can be applied to HPO. Blackbox HPO methods can be 

divided into: model-free and model-based methods. The model-free standard for hyperparameter 

optimization in machine learning is Grid Search (GS). GS is a basic automated method for hyperparameter 
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optimization (HPO). It is based on a brute force method that evaluates all the hyperparameter combinations 

given to the grid configurations. Hyperparameters are one of the inputs to experiment with, and the values 

to try. Users must have some preliminary knowledge of these hyperparameters because they are who 

generate all candidates. GS can be easily implemented and parallelized. However, the consumption of 

computational resources increases exponentially when more hyperparameters are awaiting tuning. 

Therefore, this solution is inefficient for high dimensionality hyperparameter configuration space. A more 

sophisticated approach which is also a model-free method is Random Search (RS). RS is an improvement 

on GS. Instead of trying out all possible combinations, RS randomly selects a pre-defined number of 

samples between the upper and lower bounds. The searching process continues till the predetermined 

budget is exhausted. RS is more efficient than GS for large search spaces, but it is still a computationally 

intensive method. Both GS and RS are implemented in the scikit-learn Python open-source machine 

learning library.  

Bayesian optimization (BO) has emerged as a powerful Blackbox model-based solution for this kind of 

problem. It is a sequential model-based method that determines the future evaluation points based on the 

previously obtained results. BO uses two key components: a surrogate model which is a probabilistic model 

of the objective function, and an acquisition function that aims to detect the optimal hyperparameter values 

on the surrogate model. BO balances exploration and exploitation to avoid trapping into the local optimum. 

This trade-off can be controlled via the acquisition function.  

 

 

Figure 21 Bayesian Optimization model 

The three most popular implementations of Bayesian optimization are Spearmint [26], which uses a 

Gaussian process (GP) [27] model as the surrogate model; SMAC [28], which uses random forests [29] 

modified to yield an uncertainty estimate [30]; and the Tree Parzen Estimator (TPE) [31] implemented in 

the Hyperopt Python library, which constructs a density estimate over good and bad instantiations of each 

hyperparameter to build the surrogate model.   
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Despite the effectiveness of the methods listed below, the Blackbox view is too slow for deep learning and 

big datasets. Indeed, if doing a single function evaluation takes a week then getting 50 samples would take 

a year. In order to overcome this concern, several beyond Blackbox approaches were proposed [32]. In the 

following paragraphs, we will introduce two of them: multi-fidelity optimization and meta-learning. We 

considered the second one to implement our solution.  

Multi-fidelity methods enable the use of HPO even for costly models, by exploiting approximate 

performance measures that are cheaper than full model evaluations. The cheap approximation has to behave 

in the same way as the original Blackbox function. If a hyperparameter setting does well in the cheap 

approximation, it typically does well on the expensive Blackbox. To get these cheap approximations, we 

can proceed in different ways, the most common and efficient one is to use subsets of the data or more 

generally subsets of a defined budget (time for example). Successive Halving is a simple approach that 

consists in just sampling a number of random configurations on the cheapest fidelity (for example a small 

subset of the data) and take the best fraction to move them to the next budget (a bigger subset of the data) 

and so on until the original Blackbox function is used. While successive halving is an efficient approach, it 

suffers from the budget-vs-number of configurations trade-off. HyperBand (HB) [33], which is an extension 

of Successive Halving, fixes this issue by calling the latter as a subroutine on each set of random 

configurations that are created by dividing the total budget into several combinations of number of 

configurations vs. budget for each. Since HyperBand is based on random search, it does not exploit 

knowledge about which hyperparameter settings work well and where Bayesian optimization is strong. 

BOHB [34] combines Bayesian optimization and HypeBand to achieve the best of both worlds: BO for 

choosing the configuration to evaluate and HB to decide how to allocate the budgets.  

To summarize what to use in which situation based on the available open-source implementation:  

If multiple fidelities are applicable (i.e., if it is possible to define substantially cheaper versions of the 

objective function of interest) BOHB is recommended as a robust, efficient, versatile hyperparameter 

optimization method. If multiple fidelities are not applicable, then: 

• If all hyperparameters are real-valued and one can only afford a few dozen function evaluations, 

a Gaussian process-based Bayesian optimization tool may be suitable, such as Spearmint. 

• For large and conditional configuration spaces, both the random forest-based SMAC or TPE 

proven to have strong performance on such tasks. 

The second way of going beyond the Blackbox function is to use meta-learning [35]. Our solution considers 

this approach to perform hyperparameter optimization.  

As humans we never run into the situation when we start a task from scratch, we always have prior 

experience that we can use to solve the task more efficiently than when we would have to start from scratch. 

Learning is a never-ending process, every time we encounter a new task, we learn how to do it efficiently 

based on prior experience. This process is called meta-learning, we learn more efficiently with less trial and 

error and fewer data. The main idea is to transfer an inductive bias from prior learning iterations to the new 

task. An inductive bias is any assumptions or priors added into a learning system of the new task except for 

the training data. If we extract useful information like constraints, beliefs, or representations from previous 

tasks, the new task becomes much more manageable. This dramatically speeds up and improves the design 

of machine learning pipelines and replaces hand-engineered algorithms with methods learned in a data-

driven way. 
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Figure XX 

Figure 22 Bayesian Optimization model 

The underlying part is that the prior tasks must be similar; if not, it may harm the learning. The collected 

data is called meta-data, which is data about prior learning episodes, and we transfer that to the meta-learner. 

The meta-data describes prior tasks and previously learned models. The meta-learner gets a bunch of meta-

data and has to make sense of that and use it in a useful way to construct a base learner. Then, we can do 

the actual modelling. In some cases, the meta-learner and the base-learner are squashed together, and the 

meta-learner will directly build models. 

 

 

Figure 23 Meta-learning tasks 

Meta-learning can be subdivided into three levels, each one requiring more and more similar tasks. The 

first type of problem is where the tasks can be very different from each other, and then we just generalize 

general knowledge about tasks. Typically, what humans do when they are confronted with tasks that they 

are not familiar with, they just try whatever worked well in the past. The second type is when we have more 

information about the tasks. We can characterize tasks by extracting meta-features to more explicitly 

express task similarity and thereafter compare a new task to prior tasks. Meta-features, also called 

characterization measures, are able to characterize the complexity of datasets and provide estimates of 

algorithm performance and a list of well-performing configurations. This method allows us to reason about 
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the difference between a new task and previous tasks in order to transfer information in a much more useful 

way. 

 

 

Figure 24 Meta-learning levels 

 

In the last type we come to tasks that are so similar that it is possible to take a train model from a prior task 

and then repurpose it for solving a new task. Our contribution is based on the second type of meta-learning. 

 

By using the evaluations and meta-features of previous tasks, the method aims to train a meta-learner to 

build a meta-model that tries to predict a set of optimal hyperparameter configurations for a new task. The 

meta-features used are computed on single features, or combinations of features. The main meta-features 

extracted are general meta-features which consist of simple measures of the dataset (such as the total 

number of attributes and the number of binary attributes) and statistical meta-features which are measures 

that capture statistical properties of the dataset (such as average, standard deviation, correlation and 

kurtosis). These two groups represent the most common and traditional approaches to data characterization 

[36]. Other characterization measures are described in the literature [37]. Before computing meta-features, 

a feature selection is performed on each task.         

 

 

Figure 25 Meta-learner 

Phase 3: Generation of descriptor files and orchestration 

Once we have all the configurations we need (those in the AIF catalogue and the graph and those computed 

by the auto-configuration process), the last thing to do is generate the descriptions files for the multi-tier 

orchestrator.  
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Figure 26 Helm chart overview 

To do that, the AIF graph (as a structured file) will be parsed to extract several components or groups. Each 

will be transformed into one or several values files (deployment file, secret for credentials, configMap for 

configuration, services, etc.). Once everything has been transformed, we can generate the correct and useful 

YAML files by combining the values files from the structured file and the auto-config result for each AIF 

node with the associated template. In the end, we can gather all the YAML files into a single chart. 

One of the main challenges of deploying AIFs at an edge node is the lack of a large pool of resources, high 

cost of resources, and heterogeneity of resources, to name a few. Additionally, the AIF graph may impose 

some constraints such as the availability and type of HW acceleration, constraints on co-location of AIFs, 

latency constrains or the vicinity with the source of data. For this reason, resource availability check and 

allocation is a critical task for the deployment of the AIFs.  
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A sizable body of research has been conducted on devising new approaches on service orchestration and 

resource allocation to achieve performant solutions for the embedding of services into the network and at 

the same time efficiently utilize edge resources. The works presented in [38, 39, 40, 41, 42, 43] are examples 

of studies carried out on service orchestration and resource allocation at the network edge. The main 

drawback of the listed approaches is that although they reach an optimal solution to the problem, they are 

not scalable and cannot be considered as practical solutions in real-world scenarios. To meet 5G and B5G 

requirements, service placement and resource allocation at the edge cannot rely on static algorithms but 

should consider a continuous optimization of the network.  

To support the orchestration of the AIFs, we introduce a resource allocation module responsible of 

implementing such algorithms. This module's task is to assist the MEO in orchestrating both the AIFs and 

non-AIFs components needed for composing the application or service. This module relies on the 

information present on the automatically generated YAML file described before, which contains all the 

information for the orchestration of the elements contained into the AIFs graph and on the input from the 

MEC Orchestrator regarding the available resources.  

Based on the output of the resource allocation module, the MEO will be able to choose the most appropriate 

MEC hosts where to deploy the various AIFs components and to allocate the appropriate resources. 

In the next stages of the project, we will focus on the study of advanced approaches for service orchestration 

and resource allocation at the edge targeting to achieve a shorter time and at the same time guarantee a 

certain level of performance. We will also study machine learning solutions that use operational data in the 

network for network management decisions, fully compliant with the zero-touch approach to network 

management.  
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Figure 27 Helm chart overview 

Another aspect that is crucial in edge computing is monitoring the deployed AIFs or VNFs. As a first step, 

metrics from the deployed AIFs and the VNFs need to be collected and stored in a timeseries DB (e.g., 

Prometheus) to provide temporal information over the collected metrics. The evaluation of the metrics can 

happen in mainly two ways: 

• Reactive monitoring, in which the metric is compared over a threshold. The threshold could be 

defined, for example, as part of the descriptors included in the AIF graph Orchestration – NSD. 

Once the monitored metrics overcomes the threshold (e.g., CPU level higher than x%) a specific 

action is triggered. 

• Proactive monitoring, in which the threshold is applied on a forecast (i.e., prediction) made over 

the metric. The prediction could be made, for example, using other AIFs in a serverless fashion. In 
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this approach, the system preemptively acts to avoid disruption (e.g., performance degradation or 

failures of the AIF/VNF). 

An example of the actions that could be triggered by the monitoring includes scaling-up, scaling-down or 

migrating a service. Moreover, a less intrusive approach could send an alert notifying the risk of violating 

the defined threshold. Considering the importance of an automated monitoring and alerting system in an 

edge environment, its definition and implementation in AI@EDGE will be further studied in the next stages 

of the project. 

5.3 AI@EDGE AIF Descriptor Information Model 

5.3.1 Introduction 

The AIF Descriptor (AIFD) is a deployment template, which consists of information used by the connect-

compute platform for the life cycle management of an AIF. It is a part of the AIF package and describes 

AIF requirements and rules required by the AIF provider. An AIF Package contains all of the required files 

and meta-data descriptors required to validate and instantiate an AIF. It focuses on a holistic end-to-end 

view of the AIF Package lifecycle, from design to runtime, capturing development as well as operational 

views. The AIFD will be based on descriptors currently used for describing MEC Apps and Containers, 

and will reference or augment them, when necessary. 

As it will described in more detail in the next paragraph, the AIFD may include, augment or reference 

descriptors of its constituent objects. The Descriptor models that will be considered or used as a reference 

during the definition of the AIFD are the following: 

ETSI MEC Application Descriptor (AppD) – The MEC application descriptor (AppD), including its 

attributes, is defined in ETSI GS MEC 010-2 [44]. It may be included in a MEC application package, 

encoded e.g., in TOSCA or YANG format. MEC application specifies in its descriptor (AppD) [45] some 

MEC-specific fields, such as the maximum tolerated latency, the set of required MEC platform services, 

traffic rules that allow to redirect the traffic to the MEC application, and the preferred deployment location. 

An application Descriptor (AppD) is a part of application package and describes application requirements 

and rules required by application provider. The application descriptor AppD in an application package 

contains the traffic rules required for the data packets to reach the MEC app instance running on a MEC 

host. The onboarded MEC application package contains an application descriptor (AppD) specifying the 

application requirements and desired traffic steering rules. Traffic steering rules comprise of traffic filters 

to identify the packets, actions to be taken, and the destination interface to receive the packets (the MEO 

passes the traffic steering rules in the AppD to the MEP of the chosen MEC host). The ServiceDescriptor 

data type describes a MEC service produced by a service-providing MEC application. 

HELM Charts – Helm is based on YAML and is a commonly used Kubernetes package and operations 

manager. A chart is a collection of files that describe a related set of Kubernetes resources: they contain the 

declarative Kubernetes resource files required to deploy an application. It can also declare one or more 

dependencies that the application needs in order to run. A single chart might be used to deploy something 

simple, like a cached pod, or something complex, like a full web app stack with HTTP servers, databases, 

caches, and so on. Helm charts are used to deploy an application, or one component of a larger application. 

Charts are created as files laid out in a particular directory tree. A Helm chart can contain any number of 

Kubernetes objects, all of which are deployed as part of the chart. A Helm chart will usually contain at least 

a Deployment and a Service, but it can also contain an Ingress, Persistent Volume Claims, or any other 
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Kubernetes object. They can be packaged into versioned archives to be deployed [46]. Helm charts are 

Kubernetes YAML files that accept variables. 

OSM Information Model (VNFD) -The VNFD follows a format defined in OSM, augmenting SOL006, 

because the modeling of CNF or any Kubernetes applications has not yet been included in ETSI NFV 

SOL006. The CNF descriptor (VNFD) models one or more KDU (Kubernetes Deployment Unit) with the 

specified helm chart/s, connection points (mgmt-ext) where Kubernetes services of this helm-chart are be 

exposed, and certain k8s-cluster requirements. By default, it is assumed that the helm version for the helm 

charts is v3. If the helm chart is based on v2, the descriptor should add the line helm-version: v2 in the kdu 

section.  

ONAP Application Service Descriptor (ASD) and packaging Proposals for CNF The Application 

Service Descriptor (ASD) contains the minimum information for the orchestrator, and pointers to cloud-

native artifacts and code (including configuration) required for the LCM implementation. Helm Charts are 

the primary deployment artifact for a containerized application and ASD avoids any possible source of error 

or confusion that such duplication would cause. 

5.3.2 AIF Descriptor Information Model initial definition 

In this paragraph, we discuss the initial data structure definitions that will be used by the AIF descriptor 

information model. 

The AIF Descriptor Information model is structured into domains and modules to differentiate between 

different types of information elements and their use. A core model provides generic information elements 

which are applicable to multiple interfaces. Each model is structured in Domains. In order to provide an 

end-to-end model view, it is possible to federate Information Models from different sources (MEC, NFV, 

etc.). 

The AIF’s descriptor is a descriptor provided by the AIF provider which describes the rules and 

requirements of an AIF module. When deployed in the MEC host, the AIF is deployed as a MEC 

Application, and the AIF descriptor will describe the rules and requirements of the AIF module as a MEC 

Application [47]. For this reason, the AIF Information Model will consider as a basis the MEC App 

Information model. 

The AIF package is a bundle of files provided by the AIF provider to be on-boarded into the MEC system 

and used by the MEC system for AIF instantiation. It typically includes the AIF descriptor, a software 

image (in this case a container) or a URI to a software image, and a manifest file. It can contain also other 

optional files. The AIF package is a file containing the necessary information of an AIF, used by the MEC 

system for AIF lifecycle management.  

Since the AIF is deployed in the MEC system as a MEC application, the AIF package contains also all the 

information required by a regular MEC application package (as described in [48]). The MEC application 

package unifies the MEC package format for both the classical and MEC NFV deployment cases. As such, 

it is defined in such a way that the package can be both used by the MEAO directly and can be on-boarded 

as a VNF package to the NFVO without any change. 

To facilitate the integration, it is envisioned that the AIF application package format should be aligned with 

the MEC application package. 
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Figure 28 AIF Descriptor domains 

AIF Information Model will consider as a basis the MEC App Information model. The MEC Application 

descriptor, the AppD, includes both MEC App LCM management information (e.g., it describes CPU, 

memory, hardware acceleration requirements; the reference to the virtual image of the MEC App; etc.) and 

MEC application configuration parameters, to be enforced by the MEC Platform. These include the 

description of MEC services: 

• services a MEC application requires to run. 

• services a MEC application may use if available. 

• services a MEC application is able to produce to the platform or other MEC applications. Only 

relevant for service producing app 

• features a MEC application requires to run. 

• features a MEC application may use if available. 

• Transports, if any, that this application requires to be provided by the platform. These transports 

will be used by the application to deliver services provided by this application. Only relevant for 

service-producing apps. This attribute indicates groups of transport bindings in which a service 

producing MEC application requires to be supported by the platform in order to be able to produce 

its services. At least one of the indicated groups needs to be supported to fulfill the requirements. 

The AppD also reports the information necessary for handling the traffic and implementing the route of IP 

packets to MEC applications: 

• The traffic rules the MEC application requires. 

• The DNS rules the MEC application requires 

• the maximum latency tolerated by the MEC application. 

Since the AIF is deployed in the MEC system as a MEC App, also the AIF descriptor should allow to report 

the same information. 
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Figure 29 Attributes of the MEC AppD. [49] 

5.3.3 AIFs’ features and attributes (relevant to the AIF descriptor) 

The MEC application descriptor specifies the attributes that need to be provided for the MEO (mobile edge 

orchestrator) to deploy the MEC application (Figure 28). An AIF, when deployed at the MEC, is also a 

MEC application with these specifications also applying to them. However, an AIF application is 

qualitatively different from a generic MEC application because it has an AI function which brings with it 

an additional set of attributes to define for deployment. These attributes should be informed by the type of 

AI functions implemented and should be applicable to a wide range of AIFs. Here we list additional AIF 
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specific attributes that need to be provided to the MEO to enable the orchestration of AIF MEC applications. 

An important requirement for these AIFs is the ability to deploy them in a distributed manner for federated 

learning. The federated learning paradigm requires a communication/transport channel between distributed 

AIFs to exchange data and model parameters throughout the lifecycle of learning. These channels need to 

be defined with the required constraints for each specific AIF application. Several AIFs also have 

requirements on the properties of the data sources that serve as their input. Time granularity and 

probabilities associated with predictions are some examples. The output from an AIF is also subject to some 

additional requirements that are necessary when their output is used as an input by other AIFs. Declaration 

of dependencies is important to identify loops where an AIF (A) could be using, as input, predictions from 

another AIF (B) that used AIF (A)s output as input. AIFs also need runtime attributes, such as a debug 

feature for debugging and a data augmentation feature for model updates (or retraining). In addition, the 

AIF should have an attribute that provides information of the actual model used. Considering all the points 

discussed above we have consolidated the additional attributes with a short description below. 

• Model update requirements 

o Trainable: A flag to identify whether this AIF implements a retrainable model 

o Does the ML model in the AIF need to be updated, either periodically or on trigger?  

o How often/ when does it need to be updated? This is important for the orchestrator to know 

how often this MEC application needs the resources required for model updates 

o Compute and memory resources required while retraining, or updating the model       

• Data source requirements 

o The list of data sources it needs  

o The list of data sources it shall use if they are available  

o This AIF requires input data sources to be of at least the specified time granularity to run. 

o The bandwidth required on the transport interface that connects this AIF to the data sources. 

This depends on the publish frequency and the size of the metrics in the data sources. 

o The latency requirement for the data sources. The values in the data source are only valid 

if they are consumed by the AIF within a certain time (so that the data is not stale).  

o If the input to the AIF is the output of another AIF then confidence intervals associated 

with them need to be above a certain value  

• Transport channel requirements for distributed AIFs 

o Transport/communication channel requirements of this AIF with other AIFs that need to 

coordinate with it. This includes a list of other AIFs with which it needs to relate to, and 

the latency and bandwidth requirements for this communication channel. This is essential 

for AIFs that are part of a federated learning system. The information exchange between 

these AIFs can be data or model parameters.   

• AIF output requirements  

o Configures whether the AIF output (predictions/decisions) is periodic, or event driven.  

o If it is periodic then configure the attribute to set the time. 

• AIF dependency  
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o Each AIF must include a list of other AIFs that it intends to use so that a dependency tree 

can be built to avoid loops of AIFs with dependency loops. 

• Privacy domains for AIFs to restrict data and inference sharing between different verticals but 

allowing it within the same vertical. 

• GPU requirements      

o GPU compute  

o GPU memory 

• Debug features 

o Debug run: If set, run step by step for debug purposes at the cost of slower execution time. 

• Augment data: whether to do data augmentation for this AIF 

o if the model is trainable, using this attribute to determine whether to use data augmentation, 

and also to choose which augmentation operations to use. 

• Model information:  

o Model list: return the list of models. 

o Model summary: return the basic information of each of the models, like how many layers 

and how many parameters. 

• Distribute strategy: it describes how this model should be distributed when implementing model 

training (e.g., data versus model parallelization) 
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6. Cross-layer, Multi-Connectivity Aggregation and Scheduling 

Technologies 

Multi-connectivity (MC) is a key function for 5G networks and enhances the network performance (high 

reliability, low latency, and high throughput) in many use-cases (from eMBB that targets high-capacity 

applications to the mMTC and URLLC applications that requirements very low latency). By allowing the 

user to simultaneously use multiple connections, MC increases transmission mobility robustness, reduces 

handover (HO) interruption time, and increases the overall reliability of the network. The multiple 

connections can use multiple independent communication paths, nodes, access points (APs), or base 

stations (BSs) for data transmission to a UE. 

Concerning standardization, MC has evolved from 3GPP Release 12 (with the LTE dual connectivity) to 

the 5G new radio (NR) multi-radio dual connectivity (MR-DC) paradigm in Release 16 and will be 

enhanced in Release 17. In Release 12, 3GPP introduced the Intra-E-UTRA Dual Connectivity (DC) which 

allows dual connectivity to two LTE BSs where both BSs are connected to the EPC (Evolved Packet Core). 

In Release 16, with the introduction of 5G NR, 3GPP introduced four configurations for Multi-Radio Dual 

Connectivity (MR-DC): 

• MR-DC with EPC (E-UTRA-NR Dual Connectivity (EN-DC)) 

• MR-DC with 5GC configurations: 

• NR-E-UTRA Dual Connectivity (NE-DC) 

• NG-RAN E-UTRA-NR Dual Connectivity (NGEN-DC) 

• NR-NR Dual Connectivity (NR-DC) 

While EN-DC, NE-DC, and NGEN-DC fall under the 5G NSA architecture involving two APs of different 

RATs, the NR-DC represents the 5G equivalent of the LTE DC. In NR-DC, the EPS (Evolved Packet 

System) bearer split takes place at the PDCP layer, similarly as in LTE. Depending on where the PDCP 

layer is deployed, two sub-architectures are being explored.  The first is the Xn-based NR-DC architecture 

where the PDCP sublayer is located in each gNB in a distributed fashion. The second NR-DC architecture 

is the fronthaul split-based approach, in that the PDCP sublayer is located in a centralized unit (CU) in the 

cloud while all (sub)layers below the PDCP are located in each gNB distributed unit (gNB-DUs). The 5G 

networks (and beyond) are poised to deliver enhanced quality of service through increased throughput and 

reliability as well as reduced latency, HO frequency, and probability of radio link failures. 

Besides the multi-connectivity which uses 3GPP access only as above, some solutions try to combine using 

none-3GPP as well. While 3GPP access refers to the nominal UU New Radio (NR-Uu) interface with the 

RAN of a 5G network; non-3GPP access instead opens to the possibility of connecting a UE to the 5G CN 

via different access technologies, and in particular WiFi (WLAN). Since Release 16, it is possible also to 

enable the optional feature called Access Traffic Steering-Switching-Splitting (ATSSS), in which both 

3GPP access and non-3GPP access are used simultaneously. In ATSSS, “steering” refers to the possibility 

of selecting for user-plane traffic, according to the service (QoS-type for a data flow), the best link to use, 

“switching” describes the possibility of performing handover without service interruption to the other link, 

when necessary, “splitting” means the simultaneous use (bonding) of the two links. By allowing the use of 

different RATs, ATSSS consolidates data at the transport layer by using Multiple Path TCP (MPTCP). 
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6.1 Multi-Connectivity Specific Subsystems 

The Multipath TCP (MPTCP) [50] allows the Conventional MPTCP communication between MPTCP 

capable devices. In detail, the MPTCP protocol architecture allows packets of the same TCP connection to 

be sent via different paths to an MPTCP-capable destination. The MPTCP paths are called subflows and 

are defined by pairs of source and destination IP addresses or ports. Ideally, the number of sub-flows is 

equal to the full mesh interface topology; but not all subflows necessarily used (some of them can be used 

as backup).  The scheduler is responsible for determining which subflow will be used to send data at each 

time. In case one of the terminals does not have MPTCP support, MPTCP still can be deployed thanks to 

MPTCP proxy function. It converts TCP traffic to MPTCP traffic if the endpoint supports MPTCP and 

converts MPTCP traffic to TCP traffic if the endpoint does not support MPTCP. In this section, we will a 

present multi-connectivity model using MPTCP proxy. 

6.1.1 MPTCP Proxy Architecture 

In this section, we will present three different models of MPTCP proxy, based on the position of proxy. 

The models are differentiated based on the deployment location of the MPTCP proxy. 

Off-path and On-path models 

 
(a)   off-path model 

 
(b) on-path model 
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(c) on-path model variant 

Figure 30 On-path and off-path models for MPTCP proxy usage in multi-connectivity scenarios 

 

• Off-path model (Figure 30a): the MPTCP proxy sits after the user-plane cellular core gateway, i.e., 

the subflows join after the gateway. The position of the proxy can be anywhere along the IP path 

from the user-plane gateway and the server, and therefore the multiple RATs can be under the 

control of different access operators. The address of the proxy may need to be configured in the UE 

in case of additional paths not crossing the proxy in the uplink direction. 

• On-path model (Figure 30b): the MPTCP proxy sits within the user-plane gateway and the 

subflows join at the gateway. Therefore, the multiple RATs are meant to be under the control of 

the same operator.  

• On-path model variant (Figure 30c): a variant consists in having the MPTCP proxy before the 

user-plane gateway as a network function independent from the UPF (but it would be unfeasible in 

standard 4G/5G settings due to GTP tunneling). 

ATSSS system 

The integration of MPTCP proxies in 5G systems has been envisioned since Release 16 [51] following the 

on-path model. It is referred to as ATSSS (Access Traffic Steering, Switching and Splitting) and the 

MPTCP proxy is integrated within the UPF. A complete 5GC ATSSS system description is expected for 

Release 17. The current ATSSS specification is depicted in  

Figure 31; it encompasses the integration of an MPTCP proxy for multi-RAT bonding at the UPF level, 

with the exploitation of the PCF (Policy Control Function) to regulate the scheduling over the RATs, and 

the PMF (Performance Measurement Function) to gather real-time packet-level measurements to allow 

dynamic MPTCP scheduling update. 
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Figure 31 Access Traffic Steering, Switching and Splitting (ATSSS)-capable 5GC system. Source: [52] 

In the framework of AI@EDGE, and in particular UC4 activities, we plan to design a gradual integration 

of ATSSS in the AI@EDGE platform and to design predictive scheduling algorithms for downlink 

communications at the UPF MPTCP-proxy level. Indeed, basic MPTCP schedulers presents in open-source 

implementations are reactive schedulers, changing the decision on which packet to send over which sub-

flow upon sub-flow state changes. Available open-source implementations use packet-level latency and 

buffer occupancy measures collected in real-time at the socket level, as per the MPTCP standard [45] 

6.2 Scheduling Challenges to Overcome 

TCP has a limited inability to change connection parameters without severing the connection. The MPTCP 

protocol has been proposed to provide a considerable improvement by using multiple paths transparently 

to improve throughput, to support better use of multiple connectivity through capacity aggregation and 

seamless failover. However, capacity aggregation over heterogeneous paths, such as offered by cellular and 

Wi-Fi networks, is problematic. It causes packet reordering leading to head-of-line (HoL) blocking at the 

receiver, increased end-to-end delays and lower application goodput [53] 

The role of a typical scheduler is to consider the following points: 

• Hole blocking 

• Connection failure 

• Packet loss 

• Delay variation 

The scheduling algorithm can be based on the control information of a single layer or of several 

simultaneous layers. In the following, we will define single layer and cross-layer scheduling algorithms. 
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6.2.1 Single Layer Scheduling 

In theory, the very good knowledge of the specifications and parameters of a network (like bandwidth, 

delay) allows the scheduler a perfect and optimal planning of the packets transmitted on the various paths, 

while avoiding the problems mentioned above. In a real implementation, the delay and the interference are 

variable as well as the bandwidth which varies according to the other TCP connections; the sought MPTCP 

scheduler must take into account these parameters. 

MPTCP Scheduling 

The MPTCP, improve exploiting multiple available network resources simultaneously for multi-homed 

devices. Several main benefits are brought: transferring data simultaneously through all the available paths, 

maintain connection if one of the path fails and also providing bandwidth aggregation.  

However, the latencies heterogeneity of different paths, such as those offered by cellular, Wi-Fi and 

Ethernet, conducts to the existence of out-of-order packets at the receiver level, leading to head-of-line 

blocking. A large number of these packets exhaust the limited receiving buffer and make the receive 

window be stalled, which significantly degrade the throughput. Thus, an efficient scheduling mechanism 

will play an important role to keep in-order delivery [49] 

The default MPTCP scheduler of the Linux Kernel implementation, min RTT (Round Trip Time), always 

starts by selecting the sub-flow with the smallest round-trip-time to send data. This scheduler is not 

sufficient to achieve good performance on memory-constrained devices that use a small receive window 

[47]. An ideal single layer MPTCP scheduling should consider the heterogeneous interface characteristics, 

i.e. latency, bandwidth, packet loss rate. Several researchers have proposed other types of schedulers for 

MPTCP. A Forward Prediction Scheduling [54] is a scheduling mechanism that predicts data packets 

reception times in advance, and then stripes packets onto multiple paths in a way that the packets are 

received in-order. Figure 32 illustrates the scheduling scenario, when the larger delay path j starts to send 

data, the MPTCP proxy predicts there could be five packets sent on other subflows (subflow i in this 

example). The sender keeps the numbers of the packets 1 to 5 for subflow I and the packets arrive in order 

to the UE. 

 

Figure 32 The scheduling FCS scenario 

This algorithm takes into consideration the RTT difference between different paths without considering the 

dynamic effect of path changing and the packet loss probability into consideration.  
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The Forward Prediction based Dynamic Packet Scheduling mechanism (FPDPS) [46] is close to FPS, but 

is more robust in lossy heterogeneous networks. When a subflow is under-scheduling, the sender predicts 

the size varying of TCP’s sending window for each faster subflow in the same connection. FPDPS utilizes 

maximum likelihood estimation to estimate the data amount (N) sent on them during one successful delivery 

time on the under-scheduling subflow. The FPDPS is a recursive procedure provides the estimation of 

scheduling value of the key parameter N. the estimation function of FPDPF algorithm as well as the different 

recursive situations are detailed in the reference [48]. 

The precision of the predicted value typically depends on the accuracy of the prediction algorithm input 

parameters, the RTT and the error rate often change in wireless networks which implies a deviation from 

the predicted value of N. Hence the use of feedback information collected by the proxy MPTCP allows, 

based on the Dynamics Adjustment with the feedback of SACK (DAF), to make an offset to eliminate the 

previous scheduling deviation for this round of scheduling.  

Two situations can exist whether the estimated number N is too large or too small, in both cases based on 

the dual sequence numbers used by the MPTCP which are the DSN (Connection level sequence number) 

and the SSN (sub-flow level sequence number), the transmitter can know the actual number of the 

transmitted packets in the last round and infer the elimination deviation. The DPSAF [55], Dynamic Packet 

Scheduling and Adjusting with feedback based on the basic FPDPS packet scheduling mechanism and the 

DFA, Dynamic Adjustment with the feedback of SACK. This algorithm considers both packet loss and 

time delay, which can be more adapted to wireless packet loss. 

 

 
(a) without data link synchronization  (b) with data link synchronization 

Figure 33 Scheduling scenario 

The DPSAF protocol takes into account packet loss and gets feedback information from SACK options to 

fix the scheduling value, but the detection of packet loss and the decision to retransmit it will impose a 

delay time depending on RTO or acknowledgement delay time, as shown in Figure 33a where packet 5 of 

sub-flow I is lost. If the transmitter can capture information from the data link layer such as the channel 

quality indicator, the bitrates, the percentage of packet dropped and other data link parameter, it can predict 

the loss of packet 5 for example before it receives the SACK and then retransmit it directly, Figure 33b. 

This will improve the throughput and reduces cache occupancy at the receiver, hence the need to operate 

cross-layer scheduling. 
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PDCP Scheduling 

When the user equipment (UE), accesses several networks with different radio access technologies (RATS), 

data can reach the UE from the primary base-station via multiple secondary base-stations. By taking 

advantage of the benefits of using such multiple paths, the Packet Data Convergence Protocol (PDCP) 

protocol duplicates the protocol data unit (PDU) and sends it to the user equipment via multiples and various 

paths. This PDU duplication is carried out at the data link layer implies that these various PDUs refer to the 

same packet having the same sequence number (SN). The PDCP is based on the duplication of the same 

PDU on various Radio Link Control (RLC) entities. Separate RLC PDUs can use the same MAC entity via 

carrier aggregation or go through several entirely separate MAC entities such as for example 5G and WIFI 

networks. The primary aim of duplication is to achieve reliability, among the challenges of duplicating 

PDCP data, is the selection of the right PDU on reception, the basic idea is to select the first suitable PDU 

received and to discard the other PDUs. This approach works as long as one of the paths succeeds in reliable 

communication and fails if all paths are in error, resulting in a forced retransmission of the entire block 

which increases the latency due to the RTT and what will degrade the throughput. The study in [56] proposes 

data duplication at the PDCP of the transmitter and combining at the PDCP of the receiver. The PDCP at 

the transmitter transmits duplicate copies of data through multiple paths, possibly through multiple RATs. 

If all individual paths fail in their checks at the receiver, multiple copies of data are combined. This 

procedure of combining data shows a significant improvement in the Block error rate (BLER). The 

improvement in BLER also results in throughput enhancement. These schemes will offer cell edge users 

better reliability offered by a different RAT. Since an improved BLER implies a reduced number of 

retransmissions, the average latency is also improved. 

6.2.2 Cross-Layer Scheduling 

MPTCP-PDPC 

After having indicated the advantages of using the MPTCP scheduling as well as the contributions of the 

implementation of PDPC duplication, we find it necessary to exploit the possibility of the implementation 

of cross-layer scheduling based on MPTCP-PDPC. For each MPTCP subflow we can impose the applying 

of PDPC duplication on the various RLCs which will surely improve the reliability with respect to packet 

loss as well as connection failure. 
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Figure 34 Duplicate scheduling scenario without data link synchronization 

The fully duplication of MPTCP traffic via PDCP will certainly consume the bandwidth on the various 

interfaces. Good knowledge of a particular indicator of the link-layer by MPTCP layer, such as the CQI 

(Channel Quality Indicator) and percentage of packet dropped can allow synchronization between layers to 

implement a cross-layer scheduling. A proposed solution based on applying PDCP scheduling on a specific 

MPTCP sub-flow when a binding indicator appear. In the example of Figure 34, and after an interpolation 

phase of data link indicators we can estimated an degradation of path i when sending the packet number 5: 

in this case we can release the PDPC scheduler to duplicate the sub-flow I starting by packet 5 on the others 

interfaces in order to guarantee a good level of redundancy, and to minimize hole blocking time. This 

solution can be serviced in case of a strong service degradation or connection loss on one interface. In this 

case the pre-scheduled traffic on this interface is duplicated to another interface based on the PDCP. 

MPTCP-content distribution 

Having the scheduler know more information from other layers provides an additional valuable source of 

data to support decision making. On that basis, we will coordinate among the content curation algorithms 

and the MPTCP scheduler to try to induce the best scheduling decisions on a per-content basis. 

6.3 Experimental Evaluation 

Our plan is to contribute integrating this multi-connectivity innovation in the AI@EDGE platform and 

experiment with novel predictive schedulers for the MPTCP proxy functionalities.   

For the multi-connectivity activities, two evaluation modalities will be considered.  

• First, whenever possible, a real integration with the WP4 testbed, with few real UEs to perform 

functional tests and low-scale experimental evaluation of the proposed features. 

• Second, a large-scale mixed simulation experimentation environment with many dozens of 

simulated UEs, a dozen of eNodeB and few dozens of WiFi APs. 

For both evaluation environments, we plan first to demonstrate the usage of the off-path model, with a 

programmable reactive scheduler exposing through a dedicated API its configuration. Then, we plan to 

move to the on-path model, using the project near-RT RIC to integrate (part of) the PMF functionalities 

and the MPTCP proxy as a function sitting before the UPF along the user-plane path. Possible evolutions 

then include the integration of the PMF and MPTCP proxy functionalities at the UPF, depending on its 

availability. 

The testbed for the second evaluation environment, is in the progress of construction. Figure 35 represents 

this environment (with a simplified number of UE and ENodeB). 
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Figure 35 Proof of concept in off-path testbed 

The simulation environment includes (see section 2.6): 

• 75 UE nodes, each runs in an independent namespace and using srsRAN. Each UE haves two 

network interfaces, one WiFi, and one mobile network. 

• 16 eNodeB/NSA gNodeB nodes run in independent namespace and using srsRAN. Each eNodeB 

has two UEs. 

• Radio front-end links use the ZMQ Virtual Radios to transfer radio samples between UE and 

eNodeB. 

• WiFi-AP using hostapd (HOST Access Point Daemon - a userspace daemon software enabling a 

network interface card to act as an access point and authentication server). 

• Open5GS core runs as a 5G core part and is deployed in the Kubernetes system. 

• MPTCP proxy runs in a container. 

• Application servers emulation using NS3 and run in the independent server. 
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7. Hardware Acceleration Solutions for AI/ML 

Endowing edge nodes with acceleration capabilities, i.e., with 10x additional compute power at the cost of 

a limited extra size/energy consumption, will be crucial for the success of 5G/6G applications. Decreasing 

the latency and increasing the throughput of AIF, either for network automation or user applications, 

requires some sort of parallelization inside purpose-built HW. The market provides a plethora of 

programmable HW acceleration devices: FPGA, GPU, TPU, VPU, VLIW CPU, multi-core DSP, etc. 

Furthermore, this pool of available devices has a wide range of power/size specifications to support servers 

ranging from big datacenters to small cloudlets, or even down to embedded systems and IoT boards. For 

the latter case, the accelerators are integrated inside very heterogeneous System-On-Chip architectures 

combining CPU+peripherals+accelerators, which allow building Single Board Computers with minimal 

power/size (e.g., one order of magnitude smaller than server-class devices). Such a variety of solutions 

creates a huge search space for AI@EDGE. Overall, the most prominent devices and vendors in the market 

today are the following: Xilinx for FPGA-based accelerators, Nvidia and AMD for GPUs, Intel for FPGA-

/GPU-/VPU-based accelerators (e.g., Myriad VPU targeting mostly embedded applications), Google for 

TPU-based devices (Tensors parallelizing only AI layers, not general-purpose functions like in the case of 

FPGA/GPU), and TI for DSP/VLIW-based boards. As a proof-of-concept for the Connect-Compute 

platform, the AI@EDGE project has selected devices from the former two sets, i.e., Xilinx FPGA and 

Nvidia GPU, because they cover a vast range of applications and, historically, they provide the most 

representative results in terms of acceleration with programmable HW. 

The current section will briefly describe which are the specific HW accelerators of AI@EDGE, their 

architecture, how they are introduced in servers/nodes at the edge, how they are programmed, and how they 

will be exploited by users. Additionally, for all the above, the paragraphs explain the choices taken in 

AI@EDGE. The first subsection describes the HW aspects and the acceleration testbed/servers used in 

AI@EDGE. The second subsection describes the SW aspects, i.e., how the accelerators are programmed 

and used/called, together with constraints & requirements pertaining to the choices made.  

7.1 HW Architecture of Processing Nodes Including HW Accelerators 

The HW accelerators primarily considered in AI@EDGE are daughterboard cards, i.e., FPGA or GPU 

microchips mounted on their own PCB card, which are placed inside a server node and connected to the 

main CPU via PCIe expansion slots. Such accelerators are the NVIDIA GPUs V100/P4/T4 and the Xilinx 

FPGAs Alveo U50/U200/U280. As a representative example, Figure 36, left, depicts a 1U-server 

supermicro 1029GQ-TRT at ICCS premises with two CPUs Intel®Xeon®Gold 6138 (in the center, under 

two coolers and between 12 DIMM RAM slots), together with an Alveo U280 card hosting a relatively big 

FPGA accelerator (upper side, inside the red chassis). Furthermore, the block diagram in Figure 36, right, 

shows the logical block diagram for a similar CPU+GPU server, which utilizes two PCIe switches and 

mounts up to 8 accelerator cards. In such setups, the power consumption of each accelerator card varies in 

the range of 70 to 300 Watts depending on active/passive cooling, interfaces, accelerator's VLSI area, etc. 

The form factor of such a card fits in 1U servers and its actual size lies in the area of 10x30cm (e.g., for 

Alveo U200/280 FPGAs, HxLxW(mm)=111.28x236x39.04- -111.15x242x39.04, Weight=1066-1130g). 
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Figure 36 Left: ICCS' edge “supermicro” server with a Xilinx Alveo FPGA accelerator card. Right: block diagram of a server 

with PCIe (copyright supermicro.org) able to support multiple GPU cards (copyright NVIDIA). 

Secondarily, AI@EDGE will consider smaller accelerators integrated inside embedded SoC processors, 

better suited to remote sites at the near edge (and IoT setups). Such cards combine CPU with FPGA or GPU 

accelerators inside the same main microchip, and hence, they are considerably smaller than the 

server+accelerator setup. Typically, the size of such a card is smaller than 10x10cm and can reach down to 

that of a USB stick. The power consumption varies in the range of 1-10 Watt. As representative examples, 

Figure 36, left, shows four embedded accelerators: two USB sticks with size comparable to that of a paper-

clip (Google Coral TPU and Intel MyriadX), which can be attached via USB to a CPU motherboard, as 

well as two Single Board Computers with FPGA and GPU accelerators inside their main SoC (Xilinx Zynq 

from Xiphos and Jetson Nano from NVIDIA). Bigger, more powerful embedded systems include the 

NVIDIA Jetson AGX Xavier board and FPGA developer kits such as Xilinx RFSoC and Versal. However, 

the power consumption of these cards increases to 20-50 Watts.Figure 36, right, shows on VCK190 board 

the latest Xilinx Versal ACAP SoC, which is a very heterogeneous microchip embedding FPGA fabric, 

ARM CPU cores, AI engines, etc. Such Single Board Computers are self-contained, i.e., they can operate 

as a stand-alone near-edge node, but their size increases in the area of 30x30cm. We note that the embedded 

accelerators, especially the small microchips consuming 1-10W, provide one order of magnitude smaller 

computational power than the aforementioned server-class accelerators. 

 

Figure 37 Left: small SoC devices with embedded FPGA/GPU accelerator (copyright Xiphos, NVIDIA, Intel, Google). Right: 

bigger FPGA SoC with development board (Xilinx ACAP Versal) 
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From the microarchitecture point of view, an FPGA fabric consists of a huge number of small blocks that 

each one covers a limited area, i.e., a DSP block with a single MAC unit, a RAM block of 36Kbits, a 

Configurable Logic block with a couple of look-up-tables implementing only 6-bit functions. Figure 37, 

left, depicts such a generic FPGA microarchitectural diagram regardless of device class (embedded or 

server). The computational power of the FPGA stems from the fact that these blocks can be interconnected 

at compile time to create very big and parallelized circuits/functions, as well as the fact that the number of 

today blocks reaches the order of one million (e.g., 1M LUTs and 10K DSPs for Xilinx Alveo FPGA). In 

contrast, the GPU microarchitecture includes much bigger cores that each one implements one ALU 

operation with integer or floating-point numbers (more like an ordinary CPU core). Instead of a million 

blocks, the number of CUDA cores in a GPU lies in a thousand (e.g., from 0.5K for AGX Xavier to 5K for 

V100). Alongside these CUDA cores, modern GPUs also include fewer Tensor cores (e.g., from 48 for 

AGX Xavier to 640 for V100), which are more customized for AI computations (each one performs a 

parallelized matrix multiplication).  Figure 37, right, depicts the architecture of AGX Xavier with CUDA 

and Tensor cores grouped in Streaming Multiprocessors (SM), as well as the memory hierarchy. The 

methods to program such complicated microarchitectures as FPGA and GPU are explained in the following 

subsections, together with the relevant programming approach decided for AI@EDGE. 

 

Figure 38 HW microarchitecture aspects of FPGA (left) and GPU (right) accelerators. FPGAs rely on significantly more, but 

smaller blocks to parallelize the computation compared to GPU cores (e.g., order of 1M vs 1K) 

HW Acceleration in Heterogeneous Testbed for AI@EDGE 

Based on the above landscape of HW acceleration, ICCS will build its own testbed-cluster at ICCS premises 

in order to study the accelerators' performance and develop custom solutions for AI@EDGE. The key idea 

is to utilize a number of servers and accelerators to emulate edge computing scenarios involving multiple 

nodes of diverse compute capabilities each, to test various integration approaches, to study orchestration 

techniques, measure AIF deployment efficiency, all while developing certain FPGA/GPU code to 

accelerate representative AIFs of AI@EDGE. Figure 39, shows a high-level description of the HW 

equipment to be assembled at ICCS. We will use three supermicro servers and two self-contained embedded 

processors. The latter two can emulate “remote” nodes at the far-edge, whereas the former three can emulate 

nodes at the near-edge with increased computational power (or even a single near-edge cluster/cloudlet). 

The Ethernet inter-connections of these nodes can vary in terms of speed/latency to support various network 

scenarios. The three supermicro servers will represent three different cases: a server with FPGA 

acceleration, a server with GPU acceleration, a server without acceleration. Furthermore, we will also use 

one of the servers to assume multi-card acceleration scenarios on a single node by equipping a server with 

2-3 FPGA cards. Regarding the “remote” nodes, we will utilize an ultra-low-power GPU-based SoC and 
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the latest state-of-the-art FPGA-based SoC for diversity purposes. More specifically, the key characteristics 

of the 5 nodes in the ICCS testbed-cluster are: 

• Intel Xeon E5-2658A without accelerators (8 CPUs, 8GB RAM). Also to be considered as the 

master of the local cluster. 

• Intel Xeon Gold 6138 with 1 GPU (8 CPUs, 16GB RAM, Nvidia GPU Tesla V100). To be 

considered as a worker in the cluster. 

• Intel Xeon Silver 4210 with 2 FPGAs (4 CPUs, 16GB RAM, Xilinx Alveo U200, Xilinx Alveo 

U280). To be considered as a second worker in the cluster. 

• Xilinx Versal AI Core Series VCK190 Evaluation Kit. To be considered as a high-end remote node 

utilizing the latest FPGA acceleration technology (ACAP with AI engines) 

• NVIDIA Jetson Nano Developer Kit. To be considered as a low-power low-end remote node with 

GPU acceleration. 

 

 

 

Figure 39 The testbed-cluster being assembled locally at ICCS for developing and testing the acceleration solutions of 

AI@EDGE 

HW Acceleration with GPU for supporting distinct edge scenarios in AI@EDGE 

Given the more general architecture of AI@EDGE, Italtel will examine how to leverage a multi-layer 

cloud/edge architecture spanning from end-user terminals to the centralized public/private cloud, capable 

of hosting AIFs and AI/ML tasks such as inference, local training, and global training across the different 

domain of the network. Indeed, the project promotes the vision of a new generation of AI-enabled 

applications obtained through the chaining of multiple AIFs across the converged connect-compute 
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platform. For this reason, when selecting GPUs for providing HW acceleration support for running AIF, it 

is essential to consider the different characteristics and constraints associated with each domain. NVIDIA 

provides GPU products capable of addressing the various computational environments in terms of power 

consumption and costs. Two possible architectures are considered in the project: 

• Hosted on the PCI bus of a standard server (Table 5). 

• Embedded with the CPU (SoC), typically ARM (Table 6). 

Table 5 PCI based GPU - Main characteristics 

  PCI based architecture Notes 

Domain Cloud, Edge   

Hosting Standard Server The hosting serves must be validated  

Power consumption 300W – 70W Possible candidates for edge sites are 

P4 [57] (75W) and T4 [58] (70W) 

 (Figure 40). 

Dimensions 169,53 mm x 68,90 mm Low-Profile PCI Express Form Factor 

Performance P4: 5.5 TFLOPS; T4: 8,1 

TFLOPS [59] 

Single-Precision Performance (FP32) 

 

 

 

Figure 40 T4 and P4 GPU 

 

Table 6 GPU modules - Main characteristics 

  SoC based architecture Notes 

Domain Near Edge, Far Edge   

Hosting Modules  Jetson Family [60] (Figure 40) 

Power consumption 5W to 50W   

Dimensions 69.6x45 – 100x87 mm Possible hosting on end devices. 

Performance 0.5 TFLOPs to 32 TOPS61 from Nano to AGX Xavier 
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Nano TX2 series Xavier NX AGX Xavier 

 

Figure 41 Jetson family modules 

In addition, ATOS BullSequana Edge will be used to test and validate of the AI@EDGE AIFs within a 

commercial-ready edge node. ATOS BullSequana Edge is an edge computing server, with high storage and 

processing capacity, which aims to manage and process IoT environments where real time processing and 

security are essential. It can process IoT data, as well as analyze and run AI applications in real-time for 

tasks such as computer vision or immediate decision making. It also offers reduced dependency on data 

center and cloud connectivity and availability, ensuring that applications are not interrupted in the event of 

limited or intermittent network connectivity.  

 

Figure 42 ATOS BullSequana Edge node 

BullSequana Edge runs on a 16-core Intel Xeon CPU that can accommodate up to two Nvidia Tesla T4 

GPUs or optional FPGA’s which enable the inference of complex AI models right at the Edge with the 

lowest possible latency. In relation to the memory and storage capacity, BullSequana Edge uses a SSD of 

480 GB or higher, and a memory of 32 GB RAM or higher.    

BullSequana Edge is oriented to the following scenarios:  

• Artificial Intelligence: ATOS Edge Computer Vision provides an advanced extraction and analysis 

of characteristics from people, faces, emotions, behaviors etc., to perform automatic actions based 
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on this analysis. In the case of video surveillance, it allows a large set of smart cameras to 

collaborate holistically in real time by monitoring operations without interruption.  

• Big Data: ATOS Edge Data Analytics enables organizations to improve their business models with 

predictive and prescriptive solutions.   

• Container: ATOS Edge Data Container (EDC) offers the all-in-one container solution in the place 

where data is managed and serves as a decentralized IT system. It can operate autonomously in 

non-data center environments, without the need for local on-site operations.  

 

HW acceleration for access network link monitoring and reconfiguration at the edge 

Besides the above generic HW acceleration, in the framework of UC2, AI@EDGE aims to integrate Smart-

NIC at edge servers to support runtime monitoring of the network infrastructure close to endpoints, sensors 

and actuators, and attack mitigation against detected attacks. We aim at doing that at the hardware level, 

using programmable Smart-NICs (Network Interface Cards), in order to (i) satisfy both real-time 

monitoring of network flows, (ii) guarantee the physical security of network link metrics then used for 

anomaly and intrusion detection, and (iii) exploit the reconfigurability of the Smart-NIC to mitigate attacks 

by blocking flows through an SDN approach. The metrics computed at the Smart-NIC level are meant to 

fuel the anomaly detection AIF framework (described in D3.1), as well as more specific collaborative 

intrusion detection systems such as the Split-and-Merge CIDS from [62]. A relevant challenge in taking in 

charge the real-time computing and update of metrics profiling network flows is (i) the limited number of 

primitives and operations that can be pushed at the Smart-NIC level, namely using the NetFPGA boards as 

Smart-NIC hardware and the P4 language and P4-NetFPGA environment for the SDN operations, and (ii) 

the limited time and memory budget at the Smart-NIC to scale with the line rate. 

The NetFPGA-SUME board has been designed to allow the research community to access affordable 

evaluation, experimentation and demonstration environments for 10 and 100 Gbps operations [63, 64, 65]. 

The board consists in a PCIe adapter card with an FPGA fabric manufactured by Digilent Inc. The main 

component is a Xilinx Virtex-7 690T FPGA, complemented by five subsystems as depicted in Figure 43. 

The memory subsystem is composed of a DRAM section that contains two SoDIMM slots, supporting 

modules for up to 8GB each, and a SRAM section that includes three QDR-II+ modules of 72Mb each. The 

PCIe 3.0 subsystem is used to communicate with the host machine, allowing both register access and packet 

transfer. The storage subsystem supports up to two external disks through SATA interfaces and a MicroSD 

card. The configuration and debug subsystem provides additional storage in the form of two NOR FLASH 

modules of 512Mb each, connected to the FPGA through a CPLD. This storage is intended for the FPGA’s 

programming file. The high-speed serial interface subsystem is composed by 30 serial links connected to 

Virtex-7 GTH transceivers, supporting operations up to 13.1Gb/s. These links connect the FPGA to the 

various ports on the board, such as the Ethernet Interfaces and the PCIe subsystem. 

  



 

 

D4.1 Design and initial prototype of the AI@EDGE connect-

compute platform  

 

AI@EDGE (H2020-ICT-52-2020)  74 

 

  

Figure 43 NetFPGA Sume Board [66] 

7.2 SW Development of Accelerated AIFs on GPU & FPGA 

The programming of very complex parallel architectures, such as those inside GPU and FPGA microchips, 

becomes very cumbersome when following the “classical” low-level optimization approach. Skilled 

programmers need to master parallelization techniques and low-level Hardware Description Languages, 

e.g., VHDL, which could require even months of designing-coding-debugging per AI function. Given the 

very short time-to-market targets and the proliferation of complex AIFs in the industry, it would become 

almost impractical to use HW accelerators in this “classical” way. To tackle this challenge, the vendors of 

FPGA and GPU devices are also providing high-level programming tools/frameworks for their devices, 

which allow ordinary SW developers and data scientists to exploit the underlying HW without delving into 

the low-level details of each device. Furthermore, these high-level tools/frameworks get constantly updated 

by the same vendors struggling to support the most recent techniques in AI/ML and to stay compatible with 

the most widely used AI/ML tools in the community (e.g., TensorFlow and PyTorch). Given the context 

and potential market of AI@EDGE, we adopt in the project such a tool-oriented and high-level development 

approach for accelerating AIFs, instead of performing time-consuming low-level coding & optimization 

(which would be more suitable, e.g., in a project involving smaller consolidated DSP functions and long-

term development cycles). Furthermore, a considerable amount of development effort will be devoted to 

integrating the aforementioned acceleration tools to the Connect-Compute platform and to facilitate the 

future use of acceleration in the Connect-Compute platform, instead of merely populating a extensive AIF 

catalogue only with today’s functions. The following two subsections describe more details regarding the 

tools selected for developing accelerators on GPU and FPGA for AI@EDGE, while the last subsection 

summarizes the constraints while doing so. 

Besides developing accelerators, the second aspect of SW on GPU/FPGA regards the integration to the 

Connect-Compute platform, how ordinary users can exploit the already developed AIFs in the catalogue, 

and what acceleration factors should be expected at the end. The approach adopted in AI@EDGE for this 

purpose is explained in the third subsection below.  

7.2.1 Developer tool-flow for FPGA 

Employing high level approaches for FPGA design can enable a faster and more flexible development 

process compared to RTL, especially for complex DNN (Deep Neural Networks). AI@EDGE will leverage 

High Level Synthesis (HLS) tools as well as high level tools for AI inference in order to design accelerated 
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kernels for the computationally intensive tasks of the use cases. There exist multiple vendors that provide 

HLS tools for their own FPGA platforms, the most important of which are Xilinx and Intel. Intel (formerly 

Altera) with the Intel HLS Compiler which is included in the Intel Quartus Prime Design Software 

installation aims to optimise, verify, and simulate FPGA designs. Xilinx provides the Vivado HLS tool 

which is a compiler that enables C, C++ and SystemC programs to be directly targeted into Xilinx devices. 

Also, lately Xilinx provided a unified software platform called Vitis which comes with its own compiler 

and includes support for many accelerator cards, embedded platforms or FPGA instances in the cloud. 

Lastly, it is worth mentioning that these two companies have launched in 2019-2020 a new family of devices 

which feature AI-specific engines designed specifically for AI inference through an automated process of 

compiling DNN models to the device optimized blocks. Xilinx introduced the Versal AI Core family that 

enables adaptive, domain specific architectures while Intel introduced the Stratix 10 NX FPGAs. Xilinx 

also provides Vitis-AI which is a development stack for hardware-accelerated AI inference for these devices 

and previous FPGA families as well (such as Xilinx Alveo). 

AI@EDGE will utilize high level approaches for designing accelerators specifically for Xilinx devices. The 

rationale behind this decision is the wide support of Xilinx devices and software, the quality and quantity 

of online resources, hardware capabilities and future prospects. Below we will analyze the design process 

using High Level Synthesis with Vitis as well as AI inference acceleration with Vitis-AI. 

In terms of code, by adding different directives on a C/C++ or OpenCL file, users are able to direct the HLS 

compiler to synthesize kernels for FPGA. More specifically, through an Eclipse-based framework, ICCS 

will develop the kernels with the Vitis framework through a unified OpenCL interface for programming 

edge and cloud Xilinx FPGAs. The kernel acceleration process involves HLS pragmas being applied in the 

kernel C/C++ code (e.g loop unrolling, pipelining, etc.) in order to guide the HLS compiler to synthesize 

the code for the FPGA fabric efficiently. The process is illustrated in Figure 44: 

 

 

Figure 44 Illustration of HLS design process for FPGA using the Xilinx Vitis HLS compiler 

The aforementioned hierarchy of abstraction layers of the FPGA design process includes even higher level 

layers such as automated compilers for accelerated DNN inference like Vitis AI. Vitis AI consists of 

optimized IPs, support for many deep learning frameworks (such as PyTorch or Tensorflow) and many 

DNN models (such as CNNs, MLPs, etc). It is designed with high efficiency and ease-of-use in mind 

supporting both traditional Xilinx FPGAs as well as Xilinx ACAPs that feature AI engines. First, ICCS 

with Vitis-AI optimizer will perform DNN model compression, reducing the computational complexity or 
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memory bandwidth by more than 4x with minimal accuracy impact.  Along with Vitis-AI Quantizer, the 

AI model is converted from 32-bit floating-point weights and activations to fixed-point like INT8. FP32 

arithmetic is native for CPU or GPU architectures while FPGAs can leverage INT8 arithmetic more 

efficiently. Consequently, the model requires less memory for the parameters, hence being faster and more 

efficient than FP32 equivalents. Lastly, with Vitis-AI compiler, the AI model is converted to an optimized 

instruction set and data flow in order to run on Xilinx Deep Learning Processing Unit (DPU) if the target 

platform is one of the Xilinx MPsoCs or Alveo, or on AI-engines if the target platform is one of the Versal 

AI Core Series platforms (such as VCK190). It is worth mentioning that all the flow works transparently 

also for MPSoCs, Alveos and VCK190 boards. Figure 45 shows an illustration of the Vitis-AI framework 

using a block diagram. 

 

 

Figure 45 Illustration of Vitis-AI framework for FPGA using a block diagram [source: Xilinx] 

Programming of NetFPGA accelerators 

The P4-NetFPGA project [67, 68] offers a development environment based on the Xilinx P4-SDNet 

toolchain [69] and the NetFPGA SUME open-source code base. The goal is to make it easier to program 

using P4 without needing to use a Hardware Description Language.  

The P4 architecture model currently defined for the NetFPGA SUME is the SimpleSumeSwitch, consisting 

of just a parser, a match-action pipeline and a deparser, as shown in Figure 46. We are considering shifting 

to the SUME Event Switch, a new architecture model recently developed in the P4-NetFPGA project.  The 

SUME Event Switch offers better flexibility regarding the events that trigger the pipeline to execute. A 

significant advantage is that it allows the generation of custom packets, a feature that can be useful to send 

information to the control plane. 
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Figure 46 Block diagram of the SimpleSumeSwitch P4 architecture 

The design is done according to the P4-NetFPGA workflow. First, the user writes a P4 program, a text file 

for populating the tables during the simulations and a python file used to generate the test data through the 

Scapy module [70, 71]. The P4-SDNet compiler then generates the resulting HDL instance of the 

SimpleSumeSwitch and an initial simulation framework, enabling the user to run a test-bench. The HDL is 

then wrapped and installed in the NetFPGA Reference Switch, replacing the output port lookup module. 

The second round of testing can now be made to verify that the design has been correctly integrated. After 

that, the bit-stream can be generated and the FPGA programmed. Finally, the design can be tested on real 

hardware through a command-line interface generated by the workflow. 

In order to address some P4 limitations, such as lack of support for stateful operations, we need to use some 

target-specific HDL libraries, called extern functions, to implement custom logic within the P4 program. 

7.2.2 Developer tool-flow for GPU  

NVIDIA provide free access to the CUDA [72] Toolkit that enables developers to build NVIDIA GPU 

accelerated compute applications. It consists of the CUDA compiler toolchain including the CUDA runtime 

(cudart) and various CUDA libraries and tools. It provides a development environment for creating GPU-

accelerated applications and can be downloaded from the NVIDIA website [73] The toolkit can be used on 

GPU-accelerated embedded systems, desktop workstations, enterprise data centers, cloud-based platforms 

and HPC supercomputers in order to build a software layer that gives direct access to the GPU's virtual 

instruction set and parallel computational elements, for the execution of compute kernels. CUDA is 

designed to support various languages and application programming interfaces, as depicted in Figure 47, 

as well different architecture and operating systems, as reported in Figure 48. 
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Figure 47 CUDA structure 

 

Figure 48 CPU and Operating System support 

 Figure 49 shows two possible deployments of GPU computing application (hosted in containers) on top of 

a CPU/GPU based architecture. 

 

 

Figure 49 Application deployment scenarios 

 



 

 

D4.1 Design and initial prototype of the AI@EDGE connect-

compute platform  

 

AI@EDGE (H2020-ICT-52-2020)  79 

 

GPU support for AI applications 

NVIDIA support AI application development over its GPUs providing CUDA-X, Figure 50, built on top 

of CUDA. It is a collection of libraries, tools, and technologies across multiple application domains, from 

artificial intelligence (AI) to high performance computing (HPC). NVIDIA libraries can run on resource 

constrained devices as well as on powerful devices hosted in cloud.  

CUDA-X provides: 

• a complete deep learning software stack [74] including AI libraries (Table 7); 

• support for TensorFlow, PyTorch, MXNet, and other tools; 

• support for single GPUs and multi-GPUs environments. 

 

 

Figure 50 CUDA_X 

Table 7 CUDA-X Deep Learning libraries 

Library Description Documentation 

NVIDIA cuDNN GPU-accelerated library of primitives 

for deep neural networks. 

https://developer.nvidia.com/cudnn  

NVIDIA TensorRT High-performance deep learning 

inference optimizer and runtime for 

production deployment. 

https://developer.nvidia.com/tensorrt 

NVIDIA Riva Platform for developing engaging and 

contextual AI-powered conversation 

apps. 

https://developer.nvidia.com/riva  

NVIDIA 

DeepStream SDK 

Real-time streaming analytics toolkit for 

AI-based video understanding and multi-

sensor processing. 

https://developer.nvidia.com/deepstrea

m-sdk  

NVIDIA DALI Portable, open-source library for 

decoding and augmenting images and 

videos to accelerate deep learning 

applications. 

https://developer.nvidia.com/DALI 

 

The NVIDIA NGC catalogue [75] provides pre-trained models, training scripts, optimized framework 

containers and inference engines for popular deep learning models. NVIDIA AI Toolkit includes libraries 

https://developer.nvidia.com/cudnn
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/riva
https://developer.nvidia.com/deepstream-sdk
https://developer.nvidia.com/deepstream-sdk
https://developer.nvidia.com/DALI
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for transfer learning, fine tuning, optimizing, and deploying pre-trained models across a broad set of 

industries and AI workloads. 

7.2.3 User Exploitation of accelerated AIFs 

After developing accelerated AIFs as explained above, the users of AI@EDGE will be able to exploit them 

seamlessly via the integration techniques of the Connect-Compute platform. The developer will put each 

AIF in its own docker container, almost as if it was an ordinary SW AIF, to be managed by Kubernetes 

with only a few additional modifications. Kubernetes is a widely adopted container orchestrator that already 

provides abstractions for resource management and simplifies distributed application deployment and 

management (see Section 3). In the ICCS acceleration testbed described above, we use device passthrough, 

a technology that allows the Linux kernel to directly present an internal PCI GPU/FPGA to a VM, in order 

to make the accelerator cards available to any VM and by extension to Kubernetes built on top of them. We 

utilized the device plugin framework, and the respective implementations from NVIDIA [76] and Xilinx 

[77] to advertise system hardware resources to the Kubelet, the node-agent that registers each node to the 

Kubernetes’ API. Device plugins deploy a DaemonSet to the nodes with the specified accelerator. Using 

the kubectl CLI, we can get information about the pods, (the smallest unit of deployment in Kubernetes) 

responsible for accelerators registration to the Kubernetes API. Those pods are usually deployed in the 

kube-system namespace. Furthermore, the Kubernetes API is aware of the existence and the availability 

of those resources and can (de)allocate them depending on the requests of the incoming pods/applications. 

The user can create/delete/configure resources through the Kube-API, which is usually accessed through 

the kubectl tool via the command line. We define an application (pod) through a configuration YAML file, 

as shown below, with an example GPU-enabled application: we include the resource nvidia.com/gpu: 1; 

thus Kubernetes scheduler will place this application on a node that has this resource available. In addition, 

Kubernetes API is now aware of the allocation of this resource, and since multi-tenancy in accelerator cards 

is not supported by default on Kubernetes, it will not allow other GPU-enabled containers to be placed in 

that node, unless the resource becomes available again. 

 
apiVersion: v1 
kind: Pod 
metadata: 
  name: gpu-pod 
spec: 
  containers: 
    - name: digits-container 
      image: nvcr.io/nvidia/digits:20.12-tensorflow-py3 
      resources: 
        limits: 
          nvidia.com/gpu: 1 # requesting 1 GPUs 

 

The accelerated AIF will be placed inside a container. When deployed directly via Docker, this container 

must become “privileged” with access to all devices or limited access to a specific device by using the --

device flag (with their run command). Specifically, for Xilinx Alveo FPGAs, they have a management 

function and a user function to specify a device that will be accessible within a container, which can be 

found via commands like 
  /opt/xilinx/xrt/bin/xbmgmt scan     

  /opt/xilinx/xrt/bin/xbutil scan   
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to specify a device that will be accessible within a container. To execute the container, we then issue: 
docker run --rm -it --device=/dev/xclmgmt[mgmt]:/dev/xclmgmt[mgmt] --

device=/dev/dri/renderD[user]:/dev/dri/renderD[user] [TAG] 

 

Similarly, via Kubernetes, for the deployment of an AIF on a Xilinx Alveo FPGA, by utilizing the respective 

device plugin, we are able to assign the task to the node that has this FPGA resource available. For the case 

of an Alveo U280 FPGA, we only need to request the resource:  

xilinx.com/fpga-xilinx_u280_xdma_201920_3-1579649056: 1 in the YAML configuration file. 

 
apiVersion: v1 
kind: Pod 
metadata: 
  name: lstm-pod 
spec: 
  restartPolicy: Never 
  containers: 
  - name: alveo-container 
    image: iwita/lstm_fpga 
    imagePullPolicy: IfNotPresent 
    resources: 
      limits: 
        xilinx.com/fpga-xilinx_u280_xdma_201920_3-1579649056: 1 
    command: ["./lstm_rom"] 
    args: ["krnl_lstm.xclbin","10"] 

 

For FPGA accelerators, the aforementioned Docker container image has an isolated runtime environment 

with pre-installed the Xilinx Runtime library (XRT) facilitating the communication between the 

application’s SW code and the accelerated kernel, the SW executable for the host part of the accelerator, 

the xclbin file with the kernel’s bitstream, and other dependencies that may be needed for the application at 

hand. The Docker container cannot access the host kernel of the system that runs the container, therefore 

there is the need to have the same XRT version installed on the system as a driver and use the XRT inside 

the container as runtime. Also, the FPGA should be flashed with a pre-specified Xilinx Shell, based on the 

selected XRT. We note that, when building the aforementioned container, the developer has specified the 

OS that is going to be used inside the container, downloaded and installed the selected version of the XRT 

library, copied the files required for the FPGA accelerated application, and prepared the environment 

variables inside the container so that everything will be ready after invoking the container. The server or 

host PC needs only the accelerator card (flashed with the predetermined Xilinx shell) and the XRT (same 

version as inside the container). We also note that, in order to apply accelerator-aware AIF placement in 

AI@EDGE, it might be needed to have multiple docker images prepared per AIF and uploaded in a shared 

registry, with each image built for a pre-defined combination of Alveo+XRT version; in such an approach, 

the operators will automatically edit the YAML file to request the required accelerator resource from 

Kubernetes API.  

For GPU accelerators, the NVIDIA Container Toolkit [78] allows users to build and run GPU accelerated 

containers. In addition, it includes a container runtime library [79] and utilities to configure containers to 

leverage NVIDIA GPUs automatically. Figure 51 shows the flow through the various components. 
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Figure 51 Running a container on GPUs 

7.2.4 Accelerated AIF constraints and acceleration server requirements 

In principle, any AI/ML function implemented by software can be accelerated on FPGA or GPU. However, 

for a considerable number of cases, the acceleration can prove impractical due to development time, 

implementation inefficiency (of certain AIF on specific computational models), or other HW/SW 

peculiarities. Given the aforementioned choices on HW devices and SW tools in AI@EDGE, we collect 

here a number of constraints regarding the AIF that are able to be accelerated during AI@EDGE. 

First, with respect to FPGA, the Vitis/HLS approach allows for any AIF acceleration originally written in 

C/C++ (otherwise requires language conversion), but is not recommended for the following: 

• training (mostly due to the development effort, extensive floating-point arithmetic, limited onchip 

memory) (overall GPUs are preferred for this task) 

• large ANN networks (due to device memory size and inefficient partitioning of computation as a 

result), e.g., more than 10MB-weights ANN becomes challenging (order of magnitude) 

• function recursion, dynamic memory allocation in AIF code (not supported by toolflows) 

• general pointer casting (HLS supports only native C/C++ types of pointers) 

• increased SW/function/branching complexity (due to inefficient mapping onto FPGA resources) 

• many third-party library dependencies (due to development effort required for porting to FPGA) 

(only common libraries available now by Xilinx, e.g., math.h) 

 



 

 

D4.1 Design and initial prototype of the AI@EDGE connect-

compute platform  

 

AI@EDGE (H2020-ICT-52-2020)  83 

 

We note that, although quicker performance compared to “classical” HDL development, the HLS 

development still remains considerably high-level (e.g., compared to VitisAI or Python), especially when 

targeting a certain optimization level involving a lot of design space exploration. Hence, the HLS imposes 

constraints also with respect to time/budget and only a limited number of AIFs will be developed via HLS 

during AI@EDGE. The most prominent example is the LSTM-based structure, which has already 

consumed development effort in the order of 2 person-months per AIF (from scratch).  

Second, also with respect to FPGA, the VitisAI approach starts from Python code (i.e., TensorFlow or 

PyTorch) and supports only specific sizes and kinds of layers, i.e., it can accelerate [80]: 

 

 

Figure 52 Tensorflow2 APIs 

We note that the VitisAI supported AIF should be coded in specific versions, as of December 2021: 

TensorFlow 1.x (v.1.15 without fast fine-tuning), TensorFlow 2.x (v.2.3), PyTorch (v.1.2--1.7.1). 
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Furthermore, we note that VitisAI is used exclusively for DNN inference (not training), while unsupported 

ANN layers might result in inefficient partitioning/acceleration (they will be executed on the CPU). In 

contrast to Vitis/HLS, the VitisAI supports large DNN structures by default, by following its own off-chip 

memory scheme.  

To conclude, regarding FPGA acceleration in AI@EDGE, the AIFs to be accelerated should: 

• be only for inference 

• have a straightforward and widely-used DNN structure (e.g., supported by most popular DNN 

frameworks), not very large, and be coded on specific Python versions (see above for VitisAI)  

• in certain exceptions, for AI/ML algorithms, be developed in C/C++ (see above for Vitis/HLS) 

Regarding the Server Requirements, users of accelerated AIFs must have: 

• HW: PCIe Gen3x16 cards (dual-slot), 225W extra power, >16 GB RAM (64-80GB preferred)  

• SW: K8s version >= 1.17 (1.10 for GPU), K8s plugins for FPGA+GPU, Docker latest version (>= 

19.03 preferred), drivers from NVIDIA (~384.81), XRT runtime from Xilinx (latest version, few 

MBs), Linux kernel 3.10+ 64-bit, GCC with C++14 features. No license needed. 
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8. Next Steps 

During the first year of activity, the effort of WP4 was focused on designing the Connect Compute Platform 

main components and defining the relationships between them. 

In this report, the AI@EDGE connect-compute platform (CCP) design activity results have been 

introduced. The CCP was presented as an extension of ETSI MEC and ETSI MEC in NFV architectures 

for multi-site and distributed environments. Based on the evaluation of benefits and drawbacks of both 

architectural visions, the Consortium will proceed with the integration of the components and the software 

artefacts in a way that aligns best with the system requirements of the CCP, as detailed in D2.1. The 

integration work will bring to an extended ETSI MEC/NFV based architecture with the inclusion of 

applications and models capable of providing the AI@EDGE platform with the context and metadata 

necessary to take automatically actionable decisions and to realize intelligent data and computation offload 

control and management of applications and services deployed over the decentralized and distributed 

AI@EDGE platform.  

A roadmap for the integration of the Connect Compute Platform is divided into four main phases and has 

been defined in detail in Section 2.4. Broadly speaking, the initial phases one and two focus on using 4G/5G 

NSA networks, with the SGW+PGW at the MEC hosts. Later in the project, during phases three and four, 

5G SA will be introduced, with SMF + UPF deployed at the MEC hosts. 

The integration of each component in the platform is tested in the Integration Testbed as soon as it is 

available.  

In parallel with the design activity related to the overall CPP architecture, the Consortium started to 

investigate solutions for implementing the various components of the system such as the integration of 

serverless platforms and the definition of support for AIFs application provisioning. Also, different 

hardware acceleration solutions (FPGA, GPU, CPU) to be employed at the Edge have been investigated, 

and dual-connectivity monolithic RANs have been analysed and compared with cross-layer multi-

connectivity disaggregated RANs to see if dynamically adapting the network topology to the network 

conditions. 

The next steps will follow the roadmap defined in Section 2.3 and will see the finalization of the 4G/5G 

NSA in the integration environment and the preparation for the 5G SA phase. In the next months. a 

consolidated design of the CCP is expected. As the development of the CCP components gets more mature, 

they will be gradually integrated into the Integration Testbed for initial validation. Following the CCP 

evolutionary roadmap, the serverless and function as service functionalities will be enhanced and integrated 

into the platform more tightly. MEC applications are expected to be deployed as required. A first multi-

connectivity solution will be integrated and validated in the testbed. Preparation activities will also take 

place for migrating the Integration Testbed from 4G/5G NSA to 5G SA.  
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