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Executive Summary 

An initial report is given on the systems and methods developed for the automation of the AI@EDGE 

connect-compute platform. The reported achievements are the progress towards project overall 

Objective 3 on a general-purpose network automation framework. 

The Network and Service Automation Platform (NSAP) hosts the network automation functionality 

within the overall AI@EDGE system architecture. The NSAP makes use of the concept of closed-loop 

network intelligence, where the goal is to relieve the human operator as far as possible from the need 

to take manual action to operate the system. The concept of closed-loop control is described by a number 

of steps that form the loop, including sensor, monitor, aggregator, training/inferring, decision making, 

action enforcer, orchestrator and actuator. 

The concept of closed loops are being studied in several standardisation bodies, including ETSI, O-

RAN, ONAP, TM-Forum, and ITU-T. The project takes a closer look at the designs and activities 

developed within TM-Forum and O-RAN. 

A structured approach to providing data to the data-driven methods and algorithms for network 

automation is central to the developed Network and Service Automation Platform. This is manifested 

in the concept of data pipelines that provide preprocessed system monitoring and other data to multiple 

functions that need data from the same source. A set of entities in the NSAP support the data pipeline 

system: data source, data collector, data repository, and data analytics & insights catalogue. As system 

monitoring often has to be done by parsing of text log files, automated methods for parsing and 

extracting the essential information is studied. 

A number of methods for automation and learning in MEC and cloud systems are developed. A group 

of methods provides predictive resource monitoring for service placement, often involving forecasting 

or prediction of performance metrics in the near future. Another group of methods provides advanced 

support for AI-enabled applications, for example, detection of anomalous events, methods involving 

federated learning, distributed and collaborative service placement, and data augmentation to increase 

robustness. 

The data-driven methods and algorithms do not work without the appropriate data sources. Relevant 

identified data sources include container-level data, physical server-level data, eNodeB and UE level 

data, WiFi AP-level data, application server-level data and network performance real-time monitoring 

data. 
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1. Introduction 

This deliverable is an initial report on the systems and methods developed in the project for the 

automation of the AI@EDGE connect-compute platform. It covers the identification of technical and 

architectural requirements of a framework for closed-loop network automation, systems aspects of 

automated network operations and management with scalable data exchange models, and methods for 

data-driven local and global AI/ML models for performance prediction, resource management, and 

orchestration of application components. 

The achievements reported in this deliverable are the progress towards fulfilling the project’s overall 

Objective 3 on designing and implementing a general-purpose network automation framework, capable 

of supporting flexible and reusable pipelines for the end-to-end creation, utilisation, and adaptation of 
secure and privacy-preserving AI/ML models. This objective is detailed in the four work-package 

objectives: (i) defining the technical requirements specific to the methods and systems mechanisms 

planned for development relative to the overall AI@EDGE concepts and architecture; (ii) defining the 

systems-oriented methods for developing reusable data models, scalable data propagation and 

information-exchange, container deployment strategies and processes, as well as adaptive security 

approaches implementing data protection and service isolation; (iii) designing the learning methods for 

secure and resilient infrastructure management and performance prediction, largely based on AI/ML 

for the purpose of supporting automated and adaptive deployment processes and resource allocation in 

line with application specific requirements; and, (iv) realizing the tools facilitating development and 

operation for stakeholder users (application developers, service providers/network operators) at the 

application level. 

The progress on the work-package objective (i) is largely reported in Section 2 on the AI@EDGE 

Network and Service Automation Platform (NSAP). The NSAP is a framework for closed-loop 

automated network management that provides an environment for data-driven, intelligent, methods that 

support decision making. The progress on objective (ii) is reported in Sections 3 and 5, on scalable and 

secure data pipelining and on identified data sources. The data pipeline is an important system 

component of the NSAP that provides the data needed by the respective decision making method. The 

progress on objective (iii) is reported in Section 4 on intelligent methods for automation and learning 

for network management purposes. These methods are modelled in the project as AI functions, or AIFs, 

as described in more detail in project deliverables 2.1 [D2.1] and 4.1 [D4.1]. The AIFs can serve 

different roles, for example, providing a network automation function, providing a data pipeline 

function, or providing an application function. The methods and algorithms described in this deliverable 

form an initial set of AIFs that is anticipated to be extended. In addition to the ones described in this 

deliverable, AIFs are also described as part of the development of the connect-compute platform (WP4) 

and of the use cases (WP5). The research addressing objective (iv) will start in project month 13, and 

will thus be reported on in future deliverables. 
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2. AI@EDGE Network and Service Automation Platform 

This section presents the proposed AI@EDGE system architecture and its relation to the Network and 

Service Automation Platform (NSAP) for data-driven intelligent automated network management as a 

basis for the rest of the WP3 work in this D3.1 deliverable. The brief description in this section will be 

referenced in the following sections. As an example, in Section 4, several methods for automation and 

learning in MEC system and for AI-enabled applications are presented, along with how these methods 

can be related to the described AI@EDGE system architecture shown in this section. Furthermore, in 

Section 3, the data pipeline system is presented and it is explained how it integrates with the description 

given in Section 2.1.  

This section is organized as follows: Section 2.1 presents in a general approach the AI@EDGE system 
architecture and describes the NSAP and the Connect Compute Platform. Section 2.2 describes the 

closed-loop network intelligence design and describes each type of data relevant to the closed loop: 

sensory data, monitor data and aggregated data; and each function of the proposed general closed loop: 

tactic, reaction, and performance/reward. In Section 2.3, a description of how such concepts are applied 

in the AI@EDGE project is described. Section 2.4 deals with how closed loops are defined in 

standardization projects such as O-RAN ZSM architecture and TM forum, while Section 2.5 explains 

how the AI@EDGE system relates specifically to the O-RAN architecture.  

2.1 AI@EDGE System Architecture 

This section describes the overall AI@EDGE system architecture defined in WP2. It will be used as a 

reference for the rest of the deliverable D3.1 and for elaborating the WP3 work to showcase how it fits 

into the overall architecture. Figure 1 is a block diagram of the proposed system architecture for 

AI@EDGE, which is composed of two main components: the Connect-Compute Platform and the 

NSAP. The former is addressed by WP4 and the latter is addressed by WP3. 

 

Figure 1 AI@Edge system architecture design. 

The Connect-Compute Platform is composed of the Cloud, Far Edge, and Near Edge. Each component 

is responsible for running AIFs with different latency tolerances: high latency tolerance, low latency 
tolerance, and latency-critical tolerance respectively. The cloud can use heavy virtualization technology 

such as OpenStack and VMs since the applications running in that component are latency tolerant. 

However, such virtualization technologies are not expected to run in Near Edge and Far Edge. Therefore, 
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more lightweight virtualization methods should be used such as containers and FaaS. Also, for 

orchestration, Kubernetes or microk8s1 are expected to be deployed in these domains. 

Another important concept in the AI@EDGE system architecture is the closed-loop used to manage 

network functionality on different timescales. The loop is composed of an Autonomic Manager 

responsible for the management of the closed-loop and the definition of the decision criteria used for 

the various processes. The decision taken is sent to the Orchestrator, which implements in the system 

architecture the decision made by the Autonomic Manager onto the connect-compute fabric. Closing 

the loop is a block with a monitor responsible for collecting the data and an aggregator that collects the 

data from several monitors and aggregates it in one entity. All this aggregated data is used as input for 

artificial intelligence algorithms to determine which decision should be taken to improve network 

performance or to fix specific problems that were detected. The closed-loop concept can run in multiple 

instances and in multiple locations in the architecture, depending on latency and other requirements. 

The closed loop functionality and components that implement it are shown in Figure 2 and are described 
in more detail in Section 2.2.  

To provide computational resources to the NSAP, the slice manager block will provide slices that cover 

all the domains of the Connect-Compute Platform (e.g, from Far Edge to the Cloud). Also, the NSAP 

component is responsible for the integration of four components: Non-RT RIC, Slice Manager, 

Intelligent Orchestration and Multi-tier Orchestration. The intelligent orchestration and multi-tier 

orchestration are implemented through the use of AIFs in the different closed-loop components to make 

orchestration decisions across the different domains with relevant underlying orchestration frameworks 

as described above. The non-RT RIC and its relation to the AI@EDGE architecture are described in 

more detail in Section 2.5 and in deliverable D4.1. 

2.2 Closed-loop network intelligence 

In this section, we will look into the role of closed loop control in the context of the AI@EDGE NSAP. 

A closed-loop control for network intelligence starts from the monitor collecting information from 

network sensors and terminates at performing the actions by means of, e.g., deploying AIFs, SDN/NFV 

actuators, etc. When an intelligent network task is launched, it runs as a continuous closed loop. If from 

the analysis of the network and/or service data, a network problem or anomaly is detected or predicted, 

actions to deal with that can be triggered before the task goes back to monitoring the system again.  

 
1 https://microk8s.io/ 
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Figure 2 Network automation closed-loop control loop. 

The involved functional blocks through the whole intelligence control loop, as well as its information 

flow, are illustrated briefly in Figure 2. Each functional block receives the required information from 

its previous block, derives a higher level of information and passes to the next functional block. The 

information processed by each functional module is defined as follows:   

• Sensor Data: Different data sources can be identified. Data retrieved from physical devices, 

AIF modules, data plane, SDN controller, SDN/NFV network function models, and Virtual 

Infrastructure Manager (VIM) can be referred to as sensor data. The Monitor is the 

corresponding module charge of collecting sensor data from underlying infrastructures. Some 

sensor data is periodically reported, while others are occasionally collected triggered by some 

network events or situations.  

• Monitor Data: The Monitor regularly collects the sensor data, filters out redundant information, 

and reports the necessary monitor data to the Aggregator, where the raw data from sensors are 

aggregated and correlated in order to provide high-level metrics. Some sensor data are 

periodically generated and collected at high volumes during normal operation of the network. 

Such data has much redundancy, so the Monitor needs to filter some redundant information and 

extract the informative data for the aggregation.  

• Aggregated Data: The monitor data related to a network problem/task/anomaly may be 
retrieved from a set of sensors, rather than a single one. For example, in the case of distributed 

Denial of Service attacks, the source and destination are distributed. The raw information 

contained in monitor data should be processed to produce aggregated and correlated 
information, which can be called Aggregated Data. The Aggregator performs aggregation and 

correlation of low-level monitor data provided by the Monitor. This step may involve 

performing different processing such as data normalization, verification or correlation. In order 

to facilitate the later processing stages and simplify the workflow, redundant information would 

also be discarded.  

• The function of the Training and Inferring blocks are to train AI models on the 

aggregated data and use those models to infer and identify network behaviours and 

patterns required by the decision-making framework or infer the required actions 

directly. For this purpose, a comprehensive analysis of the received data is performed, 
which includes functions such as AI/ML-based knowledge acquisition and reasoning.  
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• Tactic: When the root cause/pattern/behaviour of network problem/anomaly is determined and 

reported to the Decision Maker, one countermeasure/configuration/command can be decided 

to solve the problem. The tactic is a high-level description of such a countermeasure. Although 

a tactic is not fully detailed, it contains the necessary metadata for the action enforcement, such 

as the target locations, the effective period of the action, high-level configuration information 

etc.  

• Action: It can be regarded as an implementable version of the tactic requested by the Decision 

Maker. The target location of the action should be passed to the Orchestrator by the Action 

Enforcer. The location contained in metadata of action might be more detailed and specific than 

that of tactic, for example, the IP address of the device. The type and ID of AIFs, SDN APPs, 

SDN controller, or NFV APPs might be provided by the Action Enforcer to the Orchestrator, 

while the Orchestrator could decide implementation of the APP type in terms of the available 

resources. Besides, the lifecycle of the AIFs/APPs/network functions such as the time to start 

and stop, the duration, as well as the configuration should be provided by the Action Enforcer.  

The network intelligence not only decides an action for a network problem/task to be executed upon 

the underlying infrastructure but may also need to receive the feedback of the network responses 

afterwards. The response of the network can be regarded as an achieved performance or reward. The 

motivation of collecting the achieved performance/reward is three-fold: i) if an action achieves a worse 

performance, which degrades the performance rather than alleviating the impact of the problem, a roll-

back mechanism could be triggered to recover the network status to some of the status points before the 

action was performed; ii) the achieved performance can be regarded as the evaluation/result of a selected 

action, whose records with operational data could be used to train the network intelligence; iii) some 

intelligence algorithms, for example, the reinforcement learning needs the reward of each possible 

action to learn and find out the optimal solution.  In order to get the performance/reward information, 

the Monitor should continuously observe the underlying networks. After an action is carried out, the 

Monitor collects and reports the performance achieved by the action to the decision-making framework.  

2.3 Closed Loops and AI@EDGE System Design 

AI@EDGE will incorporate closed-loops into its architecture as an enabler for the automation of 

network management processes. The proposed closed-loop system suggests three different closed-

loops: the Resource CL, NSAP CL and Cross-Domain CL. Each CL differs based on its domain. The 

Resource CL only manages and control aspects regarding each Far Edge site while the NSAP CL can 

manage only the NSAP domain. As these different CLs do not interact with each other (Resource CL 

does not interact with NSAP CL), the Cross-Domain CL was proposed to be able to collect information 

regarding all domains (NSAP, Cloud, Near Edge and Far Edge). This CL can be used to control in a 

higher level the aspects regarding all domains of the AI@EDGE system architecture and can interact 

and manage with NSAP CL and Resource CL by giving inputs or instruction to change the current 

workflow of these CL. Figure 3 describes the location of operation of each CL. In red is the Resource 

CL, in blue is the NSAP CL and in orange is the Cross-Domain CL. It is possible to note that only the 

Cross-Domain CL can interact with each Resource CL and NSAP CL. 
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Figure 3 AI@EDGE system architecture include the Closed-Loops. 

In Section 2.5, we will describe how CL is proposed in the RAN domain in detail. This can be seen as 

a type of Resource CL, where the term “Resource CL” is a more general CL and can contain different 

types of CL such as these ones that will be deployed in the RAN domain. The project will not actively 

work on these RAN CLs, but will monitor their progress in standardization and how it relates to the 

AI@EDGE architecture. 

2.4 Closed control loops in standardization 

Autonomous Networks architecture and the associated closed control loops have gained a lot of traction 

recently across standardization bodies, such as ETSI, O-RAN, ONAP, TM-Forum, and ITU-T. For the 

AI@EDGE project, this is an opportunity to learn together with industry and certainly drive research 

on key solutions that will enable the autonomous networks realization. 

In the context of Autonomous Networks, a closed loop is defined in the TM Forum by “a framework in 

which outputs of a system, workflow, or process are circled back and used as inputs in a way to improve 

the next output. There are FAST and SLOW closed-loops, and the difference between FAST versus 

SLOW closed-loops is that FAST Closed-loops function on real-time inputs/data, while slow closed-

loops function on historical data and/or user feedback” [Boasman-Patel]. When applied to 

telecommunication networks, different control loops can be defined as shown in the Autonomous 
Networks Framework, also proposed by the TM Forum [Boasman-Patel].  

To illustrate the importance of closed-loops in standardizations, Figure 4 shows a description of the 
block diagram of the proposed autonomous network framework proposed by TM forum. There is a 

closed loop for each autonomous domain represented here as autonomous domain X and Y. In addition, 

there are the Service Closed Loop and Business Closed Loop and a main closed loop which covers the 

entire framework. Service closed-loop runs in the service application layer. Business closed-loop works 

on the business level. Besides all these closed-loops, a larger one covers all the domains of the TM 

Forum reference system architecture. 

The idea proposed by TM forum is to have Autonomous Domains that are self-contained, self-managing, 

self-optimizing, and self-healing. One key requirement is that the Autonomous Domain and the closed 

loop operate across different scopes [Boasman-Patel]. This is shown in Figure 4. Therefore, closed 

loops are a key technique to reach the autonomous network scenario as proposed by TM forum. 
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Figure 4 Autonomous Networks Framework from TM Forum [Boasman-Patel] 

Figure 5 describes the TM Forum Autonomous network architecture target. It is possible to note the 

closed-loops on the left side of the picture.  

 

Figure 5 TM Forum Autonomous network architecture target [Boasman-Patel] 

Another standardization in which the closed loops appear as an important aspect of the system is in the 

Zero-touch network and Service Management (ETSI ZSM). The closed control loop is an important 

part of the architecture and is described in more details in Figure 6. At the left side of the figure is 
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described the architecture proposed by ETSI ZSM and the red arrows are the closed loops. The right 

side of Figure 6 describes all the steps of the closed-loop, which is divided into five steps: 

• Monitoring: responsible for detecting anomalies of the entity 

• Orientation: identify the root cause of the problem 

• Decision: define the action plans 

• Execution: fix the problem 

The output of the execution step is used as input of the Managed Entity that is responsible for managing 

a specific resource. The Monitoring block collects the output of the managed entity to detect an anomaly, 

closing the loop [ETSI-ZSM].  

 

Figure 6 Closed loops in ZSM architecture. Source: ZSM001 specifications [ETSI-ZSM] 

ESTI ZSM also presents some active documents specifically for the closed loops in the ZSM network: 

• ETSI GS ZSM 009-1: Closed-loop automation: Enablers [GR ZSM 009-1]  

• ETSI GS ZSM 009-2: Closed-loop automation: Solutions [GR ZSM 009-2] 

• ETSI GR ZSM 009-3: Closed-loop automation: Advanced topics [GR ZSM 009-3] 

The third use of closed-loop in standards is in the O-RAN architecture. Figure 7 shows the closed 

control loop usage in O-RAN. There are three types of closed-loops in O-RAN architecture: Non-real-

time control loop, near real-time control loop and real-time control loop. The main difference between 

each type is the timescale of each one. The non-real-time control loop operates in a timescale of at least 

1 second. Examples of application of non-real-time loop include the instantiation and orchestration of 

network slices. In the Near real-time control, the loop operates in a timescale between 10 milliseconds 

and 1 second. In these scenarios, an external machine learning-based algorithm is implemented as 

xAPPs and is responsible for services like inference and classification, and predictions. These xAPPs 

are deployed at near real-time RIC [Balasubramanian2021]. 
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Figure 7 O-ran reference system architecture including the closed-loops (CL in picture) indicated by black arrows. 

[Balasubramanian2021] 

Concluding, this section described some of the closed-loops in standardization such as ETSI-ZSM, TM 

FORUM, and O-RAN. As AI@EDGE will implement some O-RAN capabilities (e.g, Near-RT RIC 

and Non-RT RIC), the study and usage of O-RAN closed-loop will be an important aspect of the 

AI@EDGE project. 

For future research, new closed-loops designed specifically for AI@EDGE can be designed in this 

project. Such closed-loops could be based on the ETSI-ZSM and TM Forum closed-loops definitions, 

justifying the study of such standards in this report. 

2.5 High level reference to closed loops over O-RAN in the AI@EDGE 

System Design 

At the RAN domain, AI@EDGE adopts the O-RAN architecture to provide closed-loop automation. 

Figure 8 shows the interaction between the main components and interfaces involved in the three closed 

loops envisioned by O-RAN. While Real-Time (RT) control loops involving E2 nodes are out of the 

scope of the project (e.g., optimizations on DU radio scheduling, beamforming, etc.), near- and non-RT 

closed-loops are perfect examples of the application of the different procedures and functional blocks 

introduced in Section 2.2. 
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Figure 8 Closed loops in O-RAN. 

In the near-RT control-loop, the decisions are taken by the near-RT RIC (RAN Intelligent Controller) 

and, in particular, by its xAPPs. The xAPPs are applications onboarded on the near-RT RIC, which 

consist of one or more microservices executing RAN optimizations using E2 interface based on 

available monitoring data [ORAN1]. This data includes RAN telemetry available at the near-RT RIC 

level, but could also include aggregated data from external sources such as other RAN domains or even 

applications, obtained via the Enrichment Information service of the A1 interface (A1-EI) provided by 

the non-RT RIC. The non-RT RIC can also control xAPP decisions applying policies through the A1-
P interface, which are usually related to improving the fulfillment by the RAN of the SLA for all or a 

class of users in a given area over a period of time [ORAN3]. These policies can be updated during the 
xAPPs execution by the rAPPs, as part of the non-RT control loop. Similarly, the rAPPs are modular 

applications present at the SMO/NSAP level. They can execute decisions using the functions and 

interfaces exposed by the non-RT RIC and the SMO through the R1 interface, like the aforementioned 

policy creation and update via A1-P interface, but also RAN optimizations or slice management via the 

O1 interface or NF orchestration via O2 interface [ORAN2]. rAPPs can also access the aggregated data 

from different monitoring sources present at the SMO, like RAN or application-related telemetry. 

Note that both AI-enabled rAPPs and xAPPs could be considered AIFs as defined in the AI@EDGE 

project. In such a case, they could be managed by the MTO plus the Intelligent Orchestration Controller, 

implementing some functionalities inherent to ORAN’s SMO layer. The different O-RAN interfaces 

(i.e., O1, O2, A1 and E2) could easily be linked to the AIF’s interfaces (i.e. IF1, IF2, IF3 and IF4) 
introduced in D2.1 [D2.1], further described in Section 4. The O-RAN alliance has started working on 

the specification of AI/ML workflows and requirements for its architecture [ORAN4]. The on-going 
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work envisions different scenarios (e.g. supervised, unsupervised, reinforcement and federated 

learning), where the non-RT and near-RT RICs would be capable of acting both as AI/ML training host 

or AI/ML Model Host/Actor. The A1-ML and O1 interfaces would be used for model management (e.g. 

model distribution, model update, etc.). As the standardization work is still under development, the 

AI@EDGE project will not actively work on it, but will monitor its progress to see how it fits in with 

the project architecture and how it can be utilized.  
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3. Data Pipelines and Deployment Mechanisms 

This section introduces data pipelines architecture considerations in the scope of AI@EDGE and 

discusses deployment mechanisms needed for secure service offerings and possible solutions. As the 

amount of data transferred through the network increases, the data pipeline becomes a crucial part of 

such a complex system, needed to deliver to the automation and learning methods that will be described 

in Section 4 at the necessary granularity. In the standard approach, when an application requires some 

data, they collect such data from the data source. However, the same data can be required several times 

and a redundant stream of this data can be detected (e.g, the same data is transferred twice or more). 

Since applications in the AI@EDGE architecture can also be deployed in the far edge, using the 

standard data pipeline approach to deliver the necessary data with the necessary speed and granularity 

will not be possible. Therefore, a smart data pipeline should be designed. In Section 3.1, the data 

pipeline solution, its architecture and data-driven operation aspects are presented. Section 3.2 presents 

some solutions for automated parsing and structure detection of software components logs. This is 
necessary because the logs can be used to detect problems in the data pipeline that can occurs. Section 

3.3 presents the mechanism for secure service isolation, necessary as the security of a data pipeline is 

important to protect the network. This section is concluded with Section 3.4 which presents the 

deployment mechanisms. 

3.1 Data Pipelines: Architecture and Data Driven Operation Aspects 

AI@EDGE will host of multiple AI applications such as end-user AI applications and AI for closed 

loop control. Each application would require data to process and lead to a decision, and each application 

need to fit with some specific KPIs. As an example, it is important to meet latency requirements and, if 

the data is not accessible at the desired time, the application latency will be affected. Also, it is important 

to avoid the traffic of unnecessary duplicated data in the network. Therefore, a data pipeline system 

needs to be designed to bring data to those who need it and minimize the traffic of data into the network.  

Each AI/ML application that will be developed in the project will require data to process and can use 

this data to train the model to improve its evaluated metrics (e.g. accuracy, mean Average Precision, 

QoS, and QoE). However, there are situations where multiple end user applications require data from 

the same data source. One possible approach is to design a specific data pipeline that will collect, 

preprocess, and send the preprocessed data to the application that has required it. However, this 

approach has the drawback that multiple transmissions of the same data can occur, resulting in 

inefficient usage of the network. One improvement in this design is to collect data once and then 

preprocess it in different ways according to each application’s requirement. This approach is shown in 

Figure 9. In this figure, it is described as one data pipeline structure called harmonized data ingestion 

architecture. In this approach, the data pipeline is composed basically of two main structures: The Data 
ingestion architecture and the Data refinement functionality. The former is responsible for collecting 

the data and making sure that the data is collected only once. The latter is responsible for preprocessing 

the data for each different application suite. Each different preprocessed set of data is described by the 
green box where the collected data is represented by the yellow box. It is important to highlight that 

one collection of data represented by one yellow square can lead to n different preprocessed data sets, 

one for each application that requires that data in this processed form.  

The data pipeline approach of collecting data once from the data source, preprocessing them and 

sending them to the application that required them can reduce the OPEX and CAPEX if compared to 

the traditional approach of designing one data pipeline for each application. In the AI@EDGE project, 

each application can be mapped to one or more AI functions requiring data from one or more data 

sources. The data pipeline will collect the data and preprocess it before sending it on to the AI function 

to use it. Figure 9 shows an example of a data pipeline architecture with several AI functions as the 

application components using the data. 
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Figure 9 Data pipeline using harmonized data structure in the AI@Edge context. 

 

 

Figure 10 AI@Edge using data ingestion pipeline. 

Figure 10 illustrates the AI@Edge conceptual architecture including the proposed data pipeline system. 

This system is based on the described data pipeline in Figure 9. The blocks named “Data Source” and 

“Data Collector” are in each domain in the system architecture (e.g, Cloud, Near Edge and Far Edge) 
and are described in the following: 

• Data source: is a representation of the element that contains the raw data to be collected and it 

may be different in the Cloud, Near Edge and Far Edge. ¨ 

• Data collector: is the entity responsible for collecting the data from the data source and may 

be different depending on the data source. The collected data is going to be inserted in the data 

ingestion pipeline which is a data bus that connects all the data pipeline elements. 

In the NSAP domain, there are two elements of the data pipeline proposed system: Data repository and 

Data Analytics & Insights Catalog. They are described in the following: 

• Data repository: is the element that will stores the raw data collected from the Data Source by 

the Data Collector entity. 
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• Data Analytics & Insights Catalog: are the elements responsible for storing the preprocessing 

data or any insights about these data that can be useful for the applications. 

In this proposed data pipeline system, before collecting the data from the sources, the application would 

check first if the necessary data has not already been collected and stored in the Data repository (if it is 

raw data) or in the Data Analytics & Insights Catalog (if the data necessary is a preprocessed data).  

3.2 Automated parsing and structure detection of software components 

logs 

Software component logs play an essential role in the management and maintenance of systems. 

Operating systems and virtualization systems record detailed system runtime information to support 

comprehensive system understanding and track down problems that may arise. Despite containing rich 

information, effectively analyzing logs remains a major challenge due to log size, possibly unstructured 

data nature, and frequency of software updates (thus the frequent update of logging statements). 

For AI/ML algorithm processing, and particularly within anomaly detection applications, the log can 

indeed have the form of gauge values/metrics, cumulative metrics, or natural language strings. To 

enable log analysis, the first and foremost step is log parsing, in that the raw log records are transformed 

into a stream of reformatted and structured events. Commonly, a log record includes two parts: header 

and content. The header is often structured and can be extracted relatively easily. For example, a typical 

header usually has some basic information such as timestamps, verbosity level (e.g., 

Error/Information/Bug), and name of events. In contrast, the content has, on the other hand, to be 

processed. For instance, it needs to be transformed to a suitable scale or data format. Moreover, the 

content can be hard to structure due to the inclusion of free-text messages written by developers. 

Generally, the content includes constants and variables. Constants are the fixed text written by the 

developers and represent a system event, while variables carry dynamic information. The object of log 

parsing is to separate constants and variables and build the event template from all the constants. 

There are many approaches to do log parsing, including, but not limited to: 

• Manual with handcrafted regular expressions or grok patterns: Although simplistic, writing 

special rules for parsing large amounts of logs is time-consuming and error-prone. In particular, 

these rules will need to be modified manually every time the logging code in the software 

system is updated. 

• Auto learning patterns from log data and generating a recurrent event template: 

• Frequent Pattern Mining [Vaa03]: This method considers the event templates as a 

set of constant tokens that frequently occur in the logs, so frequent pattern mining can 

be applied to automated log parsing. The log data is crossed to build the frequent words 

(a word is considered frequent if it appears more than N times in the log, where N is 

the user-specified value). These frequent words then are used to find out associated 

frequent words. If a log message contained a pattern of associated frequent words, these 

words would be regarded as constants and employed to generate event templates. 

Otherwise, the log message would be put into an outlier group. 

• Clustering [Vaa15, Fu09]: The log parsing is defined as a clustering problem of log 

messages. A log message will be added to an existing cluster if it is successfully 

matched, otherwise, a new log cluster will be created. Then, the corresponding event 

template will be extracted from each cluster. [Vaa15] is based on the [Vaa03] but it 

considers each word without its position in the event log line so it is not sensitive to 

shifts in word positions and it can able to detect patterns with wildcard tails. [Fu09] 

adopted a hierarchical clustering algorithm with a customized weighted edit distance 

metric. It based on the string edit distance (a metric to represent the similarity between 
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two strings (word sequences)  and equals to the number of edit operations to transform 

from one string to another) but added position-based weighing of words. Additionally, 

the clusters were further partitioned by heuristic rules. 

• Heuristics [Mak09, ZAPG]: The log messages have some unique characteristics like 

message length, token position, so the heuristics-based log parsing methods can apply. 

For example, in [ZAPG], for all the pairs like “word=value," the “value" is considered 

as a variable and is replaced with a “$v" symbol. 

There are many research studies focused on automated log analysis. Meanwhile, many logs 

management tools have been developed. For example: 

• Fluentd [FLU21]: is an open-source data collector, which allows unifying data collection and 

consumption. It unifies all facets of processing log data: collecting, filtering, buffering, and 

outputting logs across multiple sources and destinations. 

• GrayLog [GRAY21]: a centralized log collection and real-time analysis tool. 

• GoAccess [GOA21]: is an open-source real-time web log analyzer and interactive viewer that 

runs in a terminal in *nix systems or through your browser. It provides fast and valuable HTTP 

statistics for system administrators that require a visual server report on the fly. 

• LogParser [LOGP21]: is a set of open-source toolkits and benchmarks for automated log 

parsing. It automatically learns event templates from unstructured logs and convert raw log 

messages into a sequence of structured events. 

In data pipelining and parsing, when it comes to using AI/ML algorithms, additional data processing 

can be required for internal communication within the algorithmic fabric. For instance, models are 

trained at the device level in federated learning (an approach under consideration in AI@EDGE for 

distributed anomaly detection). The models are sent to the data sources or devices for training. Then, 

the models (i.e., models’ updates) are sent back to the main server for aggregating. At the end of each 

round, a consolidated model is sent back to the devices for further refinement. In such a paradigm only 

the training parameters (i.e., weights and biases) are exchanged between FL entities over 

communication networks, which requires us to think about applying a different approach for data piping 

from that of the traditional ML ones.  

Due to the large numbers of devices that could participate in a FL training, and complicated ML models, 

DNN-related for example, the number of training parameters could be up to hundreds of millions 

(weights and biases) [He16]. This requires incorporating a ''stage'' in the pipeline to apply techniques 

for reducing the impact of the model size on the communication means (i.e., model compression [KB], 

essential update [TZQ], etc.). Also, we might need to incorporate more different stages to the pipeline 

to handle some of the challenges introduced by FL in terms of security and privacy, for instance. In 

addition, with multiple FL aggregation servers (in a hierarchical setting), the pipeline should include 

the operations and communications between the aggregating servers. 

We are currently evaluating PySyft framework. It is an open-source library built for Federated Learning 

and Privacy-Preserving. It allows performing private and secure Deep Learning. PySyft is built as an 

extension of other DL libraries, such as PyTorch (an open-source machine learning library based on the 

Torch library, used for applications such as computer vision and natural language processing, primarily 

developed by Facebook's AI Research lab). We are also using Duet, which is part of the Syft family. It 

enables creating machine learning models with familiar tools like Jupyter notebooks and the PyTorch 

API; while allowing training over a remote session, on data you cannot see, anywhere in the world. 



 

 

D3.1 Initial report on systems and methods for AI@EDGE platform automation 

 

 

AI@EDGE (H2020-ICT-52-2020)  26 

 

3.3 Mechanisms for secure service isolation 

The data, which is being processed in the AI@Edge data pipeline, is assumed to be confidential and 

sensitive. To ensure a secure transmission of the data, the services in the data pipeline have to be secured 

from external access through encryption and isolation on a system level and  the transmission. Therefore, 

this section deals with mechanisms for secure service isolation. 

The first mechanism listed here for secure service isolation is the concept of slice. In 5G networks, 

isolation can be thought of as a built-in characteristic of a slice, as it is a logical network with certain 

capabilities that prevents illegal data exchange. To deploy the required functions, the 5G network uses 

resources from several domains as building elements, such as radio, cloud, nodes, and transport links. 

5G networks are planned to use automatic resource allocation algorithms by default. The orchestration 
and policy mechanisms are anticipated to maintain resource allocation with the desired level of isolation. 

Taking into account the existing models for describing resources in 5G networks, one can conclude that 

there is presently no uniform description of isolation capabilities that might be utilized to automate its 

implementation. Due to the fact that network slicing is a relatively new technology, academics have 

discovered a variety of implementation and security concerns. Kotulski [KoNoSeTu] goes into great 

detail on the different difficulties that the technique faces. Security and the implementation of the radio 

access network (RAN) are the main challenges. A problem that can appear is how to manage the access 

to the same data to different entities. This scenario is called the multi-tenant hosting and various privacy 

and security concerns with multi-tenant hosting must be addressed such as Risk Governance, Isolation 

Failure, Security Incidents, and Data Protection [Yur]. 

The division of the network into slices in order to deliver numerous separate sets of resources is one of 

the main principles in 5G. Isolation of resources is critical for offering a network as a service for Service 

Operators with predetermined Service Level Agreements (SLAs) and quality metrics, such as QoS or 

QoE. For years, isolation has been a well-known security countermeasure. Isolation strategies are 

classified based on how deeply they are buried in the informatics infrastructure and which technological 

tools are employed to offer it [KoZb]. 

There are two types of systems for which isolation can be defined: individual (server) and networked. 

Individual isolation techniques can be further categorized as Language-based isolation, Sandbox-based 

isolation, Virtual Machine based isolation, OS-kernel based isolation and Hardware-based isolation. 

[ViArNe] Language-based isolation refers to the isolation offered by programming languages, 

compilers, or code interpreters. Programmers are forced to write code in a way that enforces isolation 

between implemented programs or isolation of one program from the others by the languages [ScMoHa]. 

Sandboxing is the process of encapsulating untrusted code in software to prevent it from escaping into 

fault domains. It is based on the inclusion of additional instructions or checks around each store or jump 

operation in binaries, compiling the program to only leap into its own code segment and write data to 

its data region. Virtual Machine (VM) technology is used to provide computer systems with such tools 

as: emulation, optimization, translation, replication, and isolation. Hosted virtual machines (VMs) 
provide isolation between virtual operating systems, ensuring that processes running inside a VM do 

not affect processes running outside of it [Kong]. Isolation based on an operating system kernel takes 

advantage of the system's most trusted component to offer separation between applications executing 

on top of it. Its security is determined by the OS kernel's security [ZhYuGl]. Shu [Shu16] defined the 

hierarchical classification structure for isolation methods, grouping them according to several criteria. 

First, the authors consider two basic aspects of isolation which are: a mechanism used and a policy. 

Then, they describe the key properties of methods in each category. 

In the network isolation, isolation is provided considering three major methods. Firstly, Tunneling, 

where the network traffic is isolated from the outside network on its way between one fixed point (port, 

IP node, host, subnetwork, etc.) and another one. Secondly, Virtual Machine in which the network 

traffic is separated from the outside environment within a specified virtual subnetwork formed over a 
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physical network. Multi-tenancy via Tunneling or Virtual Networks is the last, in which many tenants’ 

streams of network traffic are isolated from one another via a tunnel or virtual network. 

The AI@Edge connect compute platform will isolate its services using virtualization based on VMs 

and containers. For performance considerations, containers are preferred for near edge and far edge 

applications and VMs are only employed if required. 

3.4 Deployment mechanisms 

This section provides an overview of the mechanisms, processes or best practices selected on 

AI@EDGE for deploying an application through a variety of hosting models across the cloud/edge 

continuum, each hosting model refers to a specific configuration or environments parameters that 

defines the computational, storage and networking capacity of the deployment infrastructures. The most 
common deployment models around cloud function as a virtual computing environment with a different 

deployment architecture that varies depending on the deployment type selected, such as private, public, 

hybrid, community or multi-cloud. The deployment types vary depending on who controls the 

infrastructure, its topology and where it is located. Each company will have to evaluate its own list of 

unique requirements before it can decide the best deployment model for its business goals. 

The selected deployment mechanism needs to ensure interoperability and accessibility through various 

service or operation technology providers and Hyperscale Cloud Providers. Although there is no 

industry standard agreed as yet covering all aspects of cloud/edge computing, there are many years of 

efforts behind different standardisation bodies and open source initiatives on the cloud field. In 

December 2012, the European Commission (EC) and the European Telecommunications Standards 

Institute (ETSI) launched the Cloud Standardization Coordination (CSC) initiative with the objective 

of identifying a detailed map of standards required in areas like interoperability, security, data 

portability and reversibility. On the community side, The Linux Foundation Edge seeks to facilitate 

harmonization across Edge projects creating an open source community across IoT, Telecom, 

Enterprise and Cloud ecosystems. At the same time, the Cloud Native Computing Foundation (CNCF), 

founded in 2015 as part of the nonprofit Linux Foundation, aims at promoting the evolution of container 

technology. It servers as a vendor-neutral home for many of the fastest-growing projects providing 

foundations for the development of cloud computing applications.  

Consolidated projects under the umbrella of CNCF include tools and frameworks that have been 

considered as a part of the tool chain selected to build the AI@EDGE platform, such as Kubernetes 

(K8s), Helm charts or Prometheus. Kubernetes, also known as K8s, is an open-source system for 

automating deployment, scaling, and managing containerised applications. In the AI@EDGE project, 

K8s performs the role of Virtualized Infrastructure Manager (VIM) responsible for controlling and 

managing the NFV infrastructure. The HELM charts could be used by AI@EDGE platform as 

descriptors for managing K8s packages and their operations. The chart is a collection of files that 

describes a related set of K8s resources in YAML format. 
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4. Methods for automation and learning in MEC and cloud systems 

In Task 3.3, our ambitions are to develop methods to support the automated deployment of AI-enabled 

applications in cloud and MEC infrastructures. AI-enabled applications can be composed of AIF and 

non-AI components. So, there is a high coupling with heterogenous services: network services to ensure 

connectivity, telemetry services to acquire data, analytics to extract knowledge and orchestrators to 

react from the extracted knowledge, etc.  

Distributed infrastructure, as considered in the project, will provide a powerful platform to run AI 

algorithms at scale by the use of distributed computational resources. Several approaches exist from 

simple data distribution over a set of workers or more advanced mechanisms to jointly learn and update 

a model with Federated Learning (FL). These recent approaches differs from the traditional centralized 
approaches relying on very performant machines in a cloud (and mostly homogeneous). The highly 

distributed infrastructure we consider in the project would provide multiple advantages: benefit from 

specialized hardware that might not be located in a data center, reduced latency by analyzing data closer 

to their sources, reduced privacy risks by distributing the only necessary data to certain location, etc. 

However, the counterpart is the heterogeneity of the infrastructure to be handled to deploy our services.  

In usual datacenters, network and compute resources are quite fixed, which makes easier the allocation 

of resources. In our case, the environment will be more heterogeneous with different resources to be 

leveraged, particularly with specialized hardware, and more dynamic with mobile users or devices. The 

processing and analysis of data might need to be migrated or scaled up, depending on the changing 

conditions. Even better, our objective is also to forecast the evolution of the system in order to anticipate 

the changes. We should also ensure the connectivity between the resources. That is why our project 

considers a connect-compute layer on top of which network and services must be managed or 

orchestrated in an efficient manner. 

Therefore, Section 4 will cover these challenges by providing: 

1. Monitoring techniques to get and forecast relevant information to be used for allocating 

resources for AI-enabled applications and network services; 

2. Techniques to improve the performance of ML tasks, notably the learning phase; 

3. Methods for allocating resources in order to orchestrate and deploy the services and 

applications, including AI-enabled applications composed of AIFs. 

In this first iteration, the main objective is to give an overview of the proposed techniques, and their 

positioning regarding the state-of-the-art. However, a complete decoupling of the different techniques 

mentioned below is not always possible. For example, some methods to allocate resources will be 

dedicated to federated learning tasks or a monitoring technique will be able to predict indicators or 

metrics specific to a particular task, such as allocating resources for NFV. Thus, each proposed 

technique cannot be categorized as one particular type. 

However, the proposed techniques can be distinguished whether they aim at directly supporting the 

deployment of services in the connect-compute platform (our main objective) or they aim at enabling 

additional services to improve security or performance. In the first case, covered in the first subsection, 

the objective is to predict resource availability in the platform in order to deploy or migrate services 

according to them. Techniques will differ based on the type of resources to be monitored and predicted 

which directly depends on the type of environment the services will be placed in. In the second case, 

covered in the second subsection, proposed functions could be qualified as advanced techniques to 

support a higher security (anomaly detection) and/or improve performance of using AI for service 

placement by leveraging collaborative learning or data augmentation. Several of the proposed 

techniques are also relying on AI. In these cases, they are considered as AIFs. For example, we can 

have an AIF for forecasting available computational resources to be used to deploy another set of AIFs. 

So, when possible and applicable, the proposed techniques are mapped to the initial reference model 
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for AIF of the project reminded in Figure 11 with the following interfaces (more details about the AIF 

model can be found in D2.1 [D2.1]): 

• IF1: (re)configuration 

• IF2: model parameters exchange 

• IF3: data exchange 

• IF4: reconfiguration of other entities 

 

Figure 11 AIF model. 

Thanks to this preliminary mapping, missing elements in the model such as interfaces will be identified 

and can serve as input for WP4. 

4.1 Predictive resource monitoring for service placement 

4.1.1 Predictive resource and service placement at the edge 

This subsection describes the module in charge of the prediction of resources and service placement at 

the edge using ML techniques based on gathered data from the network infrastructure. The objectives 

of the module are described, followed by a brief state of the art and a description of the prediction 

method itself. Finally, the integration within the AI@EDGE architecture is described. 

4.1.1.1. Objectives 

When deploying resources at the edge of the network, and given the scarce resources that may be 

available, it is worthy to consider methods assisting service provisioning, resource availability and 

service placement. Resource provisioning and availability cover diverse aspects that can contribute to 

optimizing the use of the infrastructure allocated to specific services or network slices, and the 

configuration of the AIFs or applications running at the edge [Sal21]. AI/ML techniques can be applied 

to this task by leveraging, for instance, the data available from the radio access network [Cor21] and 

the monitoring data made available from different hardware and software components [Pol20]. Such 

resource availability can be of great help for performing smart placement of services in distributed 

environments [Emu20]. Notice that the complex nature of service placement is highly affected by the 

continuous changing environment and constraints from users (QoS) and service providers (SLA). 

In view of this, the objective of the proposed method is to use telemetry data from the network, QoS 

and SLA constraints, to build an ML model able to estimate the resource availability and perform a 

smart service placement at the edge. Specifically, telemetry data is the network information obtained in 
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numerous infrastructure layers, both logical and physical, used as an input for the ML process. 

Telemetry data could range, for example, from the status of the infrastructure itself in the form of 

available resources at the edge nodes, to radio access network data available at the edge through MEC 

services such as Radio Network Information Service (RNIS), and in general as any variable indicator 

that can be collected from any point in the network [ETS19]. In this regard, it will be analyzed how 

distributed learning methods can improve placement strategies, by identifying migration operations that 

keep the QoS constraints across time. 

4.1.1.2. State-of-the-art 

The topic of resource placement and orchestration has attracted considerable attention in the last years. 

In particular, related research can be looked at from the point of view of the platform components (i.e., 

cloud-based, edge/cloud-based, and multi-edge, and in the case with the involvement of IoT devices in 

any of these setups) and from the point of view of the application design (i.e., a monolithic application 
containing all the required functions, or a multi-element application with necessary or unnecessary 

communication among the subcomponents). When considering a multi-layer setting, the location of the 

placement logic becomes a key issue. Another aspect to consider is the temporal aspect of the placement 

decisions. In this respect, we could find in the literature (i) offline methods, which assume a batch 

placement of all tasks; (ii) online methods, solving the placement in sequential request arrival; (iii) 

online methods with migration, which extend the second one incorporating migration tasks for the 

requests already in place; and (iv) hybrid, which fully re-optimize the placement status periodically.  

In either of the cases, a significant part of existing research assumes that services are initially placed in 

the cloud and that the MEC orchestrator must determine if and how to distribute this load across edge 

nodes [Mai19] [Zha17]. Alternatively, focusing on multi-edge scenarios, existing research usually 

focuses on a join optimization of radio association, service placement and resource allocation [Beh19] 

[Bad20]. Most of the works tackling this problem have as main optimization objective to minimize the 

latency of service completion [Mou21] or to maximize the number of satisfied requests with respect to 

delay QoS requirements and resource limits [Mse19]. Alternatively, cost minimization is widely applied 

to these problems, considering that the total deployment cost involves the wireless communication cost 

to reach the service and the consumption cost of the function placed to ensure the required QoS [Mah20] 

[Mai19]. Related to this, some works aim to predict the cost that future service migrations would have, 

based on users mobility, to estimate the initial placement [Wan17]. When the applications consist of 

multiple components, namely VMs, containers of functions, the methods adopted in the literature differ 

with respect to the previously mentioned works. A large part of the authors relies on replicas to increase 

the reliability and coverage of the service itself, and address latency constrained service access [Zha18].  

This is especially important when users show mobility patterns, since taking them as input could help 

in proactively performing a better estimation of the replica’s locations [Bah20].  

According to the location of the entity performing the placement logic, the approach could be 

centralized or distributed. The vast majority of papers assume the former case, and it is a dedicated 

orchestrator the one devoted on top to calculate the optimal placement and to enforce the appropriate 

deployment of service components [Mah20] [Mai19] [Zha17] [Beh19].  By contrast, the authors of 

[Cas19] and [Asc17] propose distributed algorithms based on voting and election procedures, thus 

demonstrating that these techniques can perform well in edge-cloud settings for workload management 

compared with centralized approaches. A similar pattern (centralized vs. Distributed) can be seen in 

approaches relying on ML tools. In the centralized case, a central entity gathers telemetry information 

from the underlying MEC platform(s) to decide on the placement. In this case, different types of 

supervised learning tools, and reinforcement tools can be observed in the literature [Mse19] [Mu21] 

[Fian20] [Kib21] [Emu21].  The authors of [Mse19] design a DRL agent that has the knowledge on 

resource availability and decides on resource allocation that maximizes the number of accepted requests, 

while performing migration processes when the response delay exceeds a threshold. A similar approach 

is also presented in [Mu21], although seeking to perform the elastic placement of VNFs while 
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minimizing the total energy consumption. However, this paper only considers the requirements of cloud 

sites. The work in [Fian20] introduces a deep learning pipeline for traffic forecasting based on 3D CNNs, 

and uses this output to perform VNF scaling and proactive routing per eNB. The authors of [Kib21] 

take a step forward and propose a similar work to [Asc17] based on RL but consider the placement of 

stateful VNFs with the main goal of minimizing placement costs. From the centralized point of view, 

also ensembled VNF deployment strategies leveraging a set of CNNs and ANNs is envisioned in 

[Emu21], showing performance and accuracy differences w.r.t standalone deep learning models. 

However, no prior work tackles the problem looking at the telemetry data from orchestrators as well as 

from the radio access network, while considering SLA and specific requirements of the MEC nodes for 

the services to be placed, e.g., hardware acceleration capabilities, availability of certain MEC services, 

etc. 

4.1.1.3. Overview of the method 

The problem described below is graphically represented in Figure 12. In particular, it can be seen how 

the potential data that can be used for the training process can be extracted from the virtual infrastructure 

manager (VIM), from MEC services available, or interchanged between orchestrators in case of 

distributed learning methods. Regardless of the final nature of the data, the ML/AI approach built must 

take care of properly managing and aggregating data from different sources, possibly using also 

different timestamps. 

 

Figure 12 Overview of the predictive service placement approach. 

This method could be divided into two approaches. The first approach would be based locally on a 

single domain (involving a single orchestration domain), and would be in charge of analyzing the 

monitoring and performance data available, and of forecasting the expected resource availability in 

terms of CPU and memory at the edge nodes to perform placement decisions on the aforementioned 

nodes. The second approach would work in a distributed manner involving agents at different 

orchestration domains and possibility deciding on service migration tasks if required due to a more 

accurate service placement or due to the degradation of QoS/SLA (if any). 

4.1.1.4. Integration in the architecture 

In the AI@EDGE architecture, different learning methods can be leveraged to introduce the required 

technical functionalities to implement the closed-loop operations. In this case, two types of learning 

models could be envisioned: centralized and distributed (including federated).  

In the centralized case, a single AIF would be required per each entity where the model is trained and 

runs (i.e., this could mean having an AIF per MEC orchestrator). The AIF would be responsible for 

estimating the infrastructure resource availability (CPU, RAM, etc.) on the underlying MEC platforms 

(and VIMs) required to fulfill the SLA requested for the placement of a new service based on telemetry 

data and perform a placement decision. This AIF would have to also take care of the initial alignment 

of data sources (different timestamps, etc.) and their preprocessing. In this case, a data plane interface 
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(IF3) would be used for data exchange of the aforementioned metrics since no interaction would be 

required among AIFs. Moreover, an IF4 interface could be used to reconfigure the placement policies 

of the corresponding orchestrator. 

In the distributed scenario, we could assume that each node with placement capabilities (i.e., a MEC or 

an NFV orchestrator) can have an AIF in charge of performing the training with local telemetry data 

from the underlying VIMs. An additional AIF could be located in such nodes for distributed learning 

purposes to interchange the weights of the model across nodes. This AIF could be optional since the 

same task could be carried out by a single AIF per node. The local AIFs would consider an IF2 interface 

(for data acquisition) and an IF3 interface (for weights and parameters aggregation). In the federated 

learning case, there could be an AIF located on a node with greater computational resources (e.g., on 

the cloud) whose task would be to compose a global model from the local AIFs, update the 

corresponding weights and take care of performing a continuous learning process. As in the previous 

case, the local AIFs will have an IF2 interface and an IF3 interface, which in this case would be used to 
request parameter aggregation and receive weights updates. The last interface shall also be present in 

the AIF on the cloud in charge of managing the federated learning operations, which would be used for 

receiving model weights from local AIFs and update each of them periodically. In both distributed and 

federated learning scenarios, the AIF would incorporate an IF4 interface to provide the service 

placement actions.  The decision on the specific learning model to be used will be detailed in the next 

deliverables of this WP. Figure 13 showcases the described AIF as well as the interfaces defined in 

distributed scenarios. 

 

Figure 13 Layout of the AIF designed for service placement estimation operations. 

4.1.2 Forecasting of measurable performance KPIs, capturing contextual RAN low-level 

and network layer data at the edge for user mobility 

This module addresses the pivotal role that network function virtualization (NFV) technology plays in 

the realization of the 5G networks [ETSINFV2014, ETSINFV2017], as it decouples the legacy network 

functions (NFs) from purpose-built hardware and deploys them as platform-independent virtual 

network functions (VNFs). NFs in the 5G core service-based architecture (SBA) [3GPP5GS], such as 

the user plane function (UPF) and session management functions (SMF), are deployed as VNFs. In this 

way they provide unprecedented management flexibility while curtailing both capital expenditure 

(CapEx) and operational expenses (OpEx). NFV provides the opportunity to represent 5G network 

services and applications as a single VNF or multiple VNFs interconnected in a particular order forming 

service function chains (SFCs) [BEH21].  Multi-access edge computing (MEC) is expected to be widely 

adopted in the 5G network in order to satisfy the ultra-low latency requirement of certain applications 
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and services while at the same time alleviating the transport network load. In conjunction with NFV, 

MEC enables both the 5G core VNFs and the application VNFs to be placed at the most appropriate 

location at the mobile network edge [ETSIMEC].  

4.1.2.1. Objectives 

In order to fully take advantage of the benefits of delivering services at the Edge, it is necessary to 

carefully consider the available resources that can be scarce and are shared between various competing 

services and applications. It is therefore necessary to adopt efficient methods capable of making 

intelligent use of resources [TANG]. Moreover, in the context of mobile networks, it is also necessary 

to consider the mobility of the users and their potentially frequent handovers that add dynamicity to the 

network configuration. In this context, providing service continuity is a challenge that involves VNFs 

migration and dynamic resource allocation [BEH21].  

The objective of the proposed method is to employ the Radio Network Information Service (RNIS) 

available at the MEC hosts to predict the user location during mobility. These predictions, together with 

the forecasted performance KPIs based on data captured at RAN and Network Layer at the edge, are 

meant to be used for decision making regarding VNFs migration or re-instantiating. Measured KPIs 

could also be given as input to other modules for performing various actions by means of, e.g., 

SDN/NFV actuators, resources allocation etc. Through analyzing the network and/or service data, 

intelligence control loops can be triggered. 

4.1.2.2. State-of-the-art 

Service VNF migration has a great impact on both the QoE perceived by the end-user and the network 

performance. In this regard, a sizable body of research has been conducted on the problem of service 

VNF migration. 

Xia et al. in [XIA] intend to minimize the VNF migration cost, where the cost is defined as the overall 

traffic served by the VNF. The problem is tackled using integer linear programming (ILP) techniques.  

Moreover, they propose a heuristic algorithm to minimize the migration cost and tackle the scalability 

issue of the proposed ILP method.  Another study by Cho et al. [CHO] formulates the problem of VNF 

migration for latency stringent applications in a highly dynamic environment. They also propose a 

heuristic algorithm, which triggers VNF migration when SLA violations happen. Carpio et al. in 

[CARPIO] introduce a linear model to combat the problems of QoS degradation caused by service 

interruptions and improper load distribution among servers. They study the trade-off between VNF 

replication and migration of already deployed VNFs to balance the load on them and reduce the number 

of migrations. The study in [HAWILO] proposes a mixed-integer linear programming model to decide 

whether to migrate or instantiate the VNFs of the same service in case of failure or resource scaling, 

having the objective of minimizing service downtime and service latency. Behravesh et al. in [BEH21] 

considers both SFC placement and VNF migration into account and propose a MILP model and 

heuristic algorithm to tackle the problem.   

Specifically, they propose an objective function to minimize the number of UEs that change their 

serving node. One way to achieve this goal is to minimize the number of VNF migrations and, upon an 

urgent need for a VNF migration, decide which VNF to migrate in order to ensure a minimal effect on 

the UEs served from that VNF. 

Performing predictions at the RAN is challenging due to the continuous changes in the physical channel 

and the availability of different RATs. Recently, employing ML methods to predict the behavior of 

users has gained tremendous attention. Predicting user behavior is important since these predictions can 

be employed for taking actions that can result in better network performance and, at the same time, 

improve the user experience. Behravesh et al. in [BEH20] employ Random Forest and Gradient 

Boosting Trees to predict the base station association of the users and, based on that, to place the content 
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at proper MEC servers that can lead to the highest satisfaction for the end-users. Amina et al. in 

[AMINA] propose an AI-empowered method for the migration of stateful VNFs. The objective of the 

work is to minimize the sum of operations cost and potential loss caused by outages. Takahiro et al., in 

[HIRAYAMA] propose an encoder-decoder Recurrent Neural Network for the problem of VNF 

migration to dynamically react to changes that happen in the substrate network.   

4.1.2.3. Overview of the method 

As mentioned above, the first problem that we are going to tackle is to predict the next base station that 

a user will be associated with. In this regard, we will employ data-driven Machine Learning (ML) 

methods to predict base station association of the user based on the radio metrics gathered from the 

RNIS service, which is available to the applications as a service by the MEC platform.  

The prediction results gathered from the ML method will be provided to an Integer Linear Programming 

(ILP) model designed to embed the SFCs onto the substrate network. The ILP model makes decisions 

regarding the migration of the services, the state of the users, or the re-instantiation of a new service in 

the destination MEC host for the user. In this study, we consider different objectives to optimize the 

network, such as Quality of Service (QoS) and cost metrics.   

4.1.2.4. Integration in Architecture 

The ML method gets information on the radio metrics gathered from the RNIS service, which is 

available to the applications as a service by the MEC platform, the output is the prediction on the 

location of the user (during mobility), as illustrated in Figure 14. the design of the AIF for user mobility 

prediction consists of ML model that predicts User base station association from low-level RAN data 

received via IF3 process. The ML predictions on the user base station association are provided to an 

ILP model via IF2 process, which takes the decision regarding the migration of services or new service 

instantiation in the predicted MEC host. 

 

Figure 14 Outlines the AIF interfaces of the Proposed schemes. 
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4.1.3 Predicting general and application specific user performance from the mobile edge 

perspective 

4.1.3.1. Objectives 

Resources in a MEC enabled mobile network consist of radio, storage and compute resources. 

Allocation and management of these resources efficiently in highly dynamic scenarios requires 

proactive actions based on predicted requirements of users in the network using high granular metrics 

that capture the network state. Applications hosted at the edge require predictions of user performance 

so that they can effectively satisfy the demands of the users and provide performance guarantees to 

them as well as effectively use the shared edge resources they have. All intelligence decisions made at 

the edge require predictions of user performance to act on. This work will predict performance at the 

application level e.g. for video streaming applications to predict bitrate of user requests 

[DIA20][ZHO17], and at the network level, e.g. predicting delay performance at the user using base 

station metrics [BEN94] [SAT17].  

4.1.3.2. State-of-the-art 

Performing predictions in radio access networks (RANs)is especially challenging due to the continually 

changing conditions of the physical channel and the availability of different radio access technologies 

[KARIM]. Employing ML to predict specific metrics (e.g., channel throughput) for RAN has gained 

importance in the past years [YUE], [SAMBA][KARIM][RACA2]. Within the context of DASH, 

previous work employing ML focused mainly on bandwidth estimation at the client, which constitutes 

an input to most ABR algorithms. To this extent, Raca et al. [RACA3] demonstrate that integrating 

throughput prediction in the client can increase QoE regardless of the employed ABR algorithm. This 

idea is further explored by Raca et al. [RACA], where the authors used an RF algorithm at the client to 

predict the expected average throughput over a time horizon. Moreover, Mao et al. [MAO] developed 

a reinforcement learning method for directly obtaining the bitrate for the next video chunk. The model 

employs an Actor-Critic neural network model at the client, whose input includes historical throughput 

information, buffer state, and next chunk sizes. Liang et al. [LIANG] demonstrate and motivate the 

benefits of predictive pre-fetching. They consider streaming over a wired network wherein the rate of 

change of segment bitrate is very low, justifying their assumption that the next bitrate requested can be 

the same as the previous bitrate requested. Compared to the literature, we consider a more current 

realistic scenario that specifically addresses the challenges of pre-fetching in a highly dynamic wireless 

environment by using ML-driven prediction. Our approach performs the predictions at the MEC server, 

and its main aim is to assist the overall caching process at the core. To this end, it employs an end-to-

end ML solution that uses the RAN metrics and past history of segments served to a client to predict 

the number of segments requested over a time horizon and the mode of these segments’ qualities per 

client. 

Applying ML for service assurance in 5G networks is now a thriving research topic. In [MAMUN], 

anomalous outliers are pre-directed using ML in a testbed network. In [ANGUS], three different ML 

algorithms were tested to find anomalies at the cell level, that is, cases where an entire cell experiences 

poor QoE due to a malfunctioning eNodeB. The authors of [SUND] focus on anomaly detection in 

functional behavior using 5G testbed system logs, and the authors of [MAIM] develop a system to 

detect cyber threats using a neural network model. The authors in [BOLD] present a proactive approach 

that predicts future base station alarms. Also, the authors of [YANG] present a distributed ML 

architecture for wireless network management, allowing tasks such as model training and inference 

drawing to be performed across the entire network. In these studies, the focus is on predicting anomalies 

that, over a large scale, affect at least an entire cell or even a wider area over a large timescale. Our 

work aims to provide one step ahead prediction of performance and tie it to the application-level QoS 

on UEs in the high-granular time scale of milliseconds. The authors of [NARA] present Lumos5G, ML 
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framework, used for predicting throughput as perceived by applications running on the UEs. Through 

extensive experiments and statistical analysis, they identify the key UE-side factors that affect 5G 

performance, as well as quantify to what extent the throughput can be predicted. This work uses data 

from the UE for performance prediction, while our work extracts base station data for the performance 

prediction modeling, which is less studied and has more impact on network providers. 

4.1.3.3. Overview of method 

We are developing an approach to use deep neural networks to predict the video segment bitrate of a 

DASH video stream through supervised learning from an ns-3 simulator dataset, using RAN and DASH 

application metrics as features. This prediction of segment bitrate shall then be used to prefetch and 

cache these segments resulting in reduced access delay for the content and potentially to reduce 

backhaul bandwidth utilization for shared content.  

We shall also investigate the use of deep neural networks for predicting delay violations of time critical 

traffic in 5G RAN. The approach shall investigate the classification of delay into classes, which can 

then trigger resource diversion/management actions to mitigate upcoming high delay events that could 

violate delay constraints. 

4.1.3.3.1. The prediction problem formulation 

 

Figure 15 Formulation of the prediction problem 

Table 1 Input features to the learning model and the output feature to be predicted. 

Input features Description 

Last #seg. number of requests sent out in the previous window 

Last bitrate bitrate of the previous segment request 

Seg. throughput throughput over the last downloaded segment 

Window throughput throughput over the last 10 s 

Buffered Bytes bytes in the video playback buffer 

Buffered #seg. number of segments in the video playback buffer 

DL RSRP downlink RSRP 

DL SINR downlink SINR 

DL MCS downlink modulation and coding scheme 

DL throughput downlink MAC throughput 

Output value Description 
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Next bitrate predicted bitrate of the segment to be requested next 

During DASH video streaming, segments are requested sequentially by the clients at the bitrate chosen 

by the ABR. Once a segment is downloaded or fetched, the ABR decides when and at which bitrate the 

next segment should be requested. Due to limited buffers at the clients, segments are requested as and 

when they are consumed by the video player, or, in the case of live streaming, as and when they are 

created. The prefetching of segments is also done on a need basis in sync with the aggregated clients’ 

requests. We aggregate predicted bitrates of requests of clients over prediction windows, Wpred, and 

prefetch them periodically. The input features are created from metrics aggregated over an aggregation 

window, Wagg. Figure 15 shows the time line of how metrics are aggregated and predictions are made. 

The metrics used as the input features and the output predicted metric (output feature) are listed and 

described in Table 1. The input features can be categorized as low-level RAN metrics obtained using 

the RNIS function from each radio base station, and high-level metrics obtained from the DASH 

application. Note that it also contains the last segment history of the bitrate which is the previous 

requested bitrate seen in Wagg. To summarize, the prediction problem formulation is the prediction of 

the next bitrate for each client in Wpred using the features in Wagg as input. 

During inference, the prediction algorithm is run periodically to predict the requests expected in the 

next Wpred window. The overall complexity of the prediction task scales linearly with the number of 

clients in the network. However, since the prediction task for each client can be run independently, it 

can be parallelized to run over distributed compute resources.  

4.1.3.3.2. Data preprocessing 

All the metrics we consider as input are time series quantities observed with different periodicities. 

Some are sample metrics (e.g. RSRP), wherein we have a measured value for every observation, while 

others like MAC throughput can only be measured over windows. To reconcile these differences in how 

metrics are observed, we aggregate them over time windows (Wagg, metric's aggregation window) to 

generate a structured tabular dataset. 

Since the data is a time series, there is a time correlation between samples of input metrics. Since the 

prediction quantity is the bitrate of a segment of 8 seconds video, small time correlations do not impact 

the output much and can be averaged over as we have done using Wagg. The choice of Wagg size should 

be informed by the rate of change of state in the radio network as well as the segment duration (which 

influences the rate of segment request) of the streaming video. The trade-off here is between too little 

information in small windows and too stale information in large windows. It is reasonable to pick 

window sizes that are roughly in the range of the size of segments since this is the time frame over 

which network variation has an impact on segment bitrates.  

Table 2 Prediction accuracy using RF over varying aggregation and prediction window sizes. 

 Aggregation window size (s) 

Prediction 

window size 

(s) 

 4 8 12 16 20 24 

2 0.859 0.883 0.901 0.903 0.897 0.891 

4 0.843 0.874 0.890 0.892 0.889 0.882 

6 0.800 0.855 0.876 0.887 0.885 0.878 

When selecting the prediction window size, Wpred, larger windows mean that there are potentially 
multiple segment requests sent out in the window resulting in additional complexity to the problem, 

requiring estimating the number of segments. A two-step approach would be required, with separate 
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predictions for the number of segments requested and the bitrate of each of those segments. In our 

previous work, we considered such a formulation [BEH20]. Wpred also increases the waiting time from 

when a request was sent and when the next one is predicted and prefetched. However, if it is made too 

small, then predictions will be made very frequently, resulting in a high computation cost to run the 

prediction and prefetching algorithms. This is evaluated in Table 2. Note that several of these Wpred 

windows will be empty since we choose them to be smaller than the typical time between segment 

requests. These empty windows just result in empty rows in our structured dataset and are ignored 

during learning. The results of our empirical evaluation of these window sizes are presented in Table 2. 

We compared the sizes using the prediction accuracy obtained using a random forest model and chose 

Wagg to be 12 seconds and Wpred to be 2 seconds. We obtained a similar order of results for all models 

we explored and have hence presented the results from one model. 

4.1.3.3.3. Proposed solution using ML 

 

Figure 16 Histogram of request bitrate classes. 

 

Figure 17 Number of requests in a 2 second prediction window. 

The problem of predicting the next request bitrate is modelled as a supervised learning multi-class 

classification problem. Figure 16 and Figure 17 show the bitrate class distribution and the distribution 

of number of requests observed in 2 second windows in our dataset. The class imbalance is not high 

and more than 95% of the non-empty windows have only one request. This indicates that only in 5% of 

the cases it will be unable to cater to the prefetching requirements in window with our formulation.  The 

set of available bitrates for each segment and hence the classes for classification are 1\2.5\5\8\16\35 
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Mbps (higher rates correspond to HD, 2K, and 4K video qualities). We implement four models for the 

proposed prediction task, two decision tree-based models, Random Forests (RF) and Gradient Boosted 

trees (XGB), and 2 neural network models, multi-layer perceptron (MLP), and Long-short term memory 

(LSTM).   

RF is a method used in this domain in previous literature [RACA] [YUE], with good results. We explore 

another decision tree based approach, gradient boosted trees [CHEN2016] due to their consistent high 

performance in the recent past over structured tabular data [CAR2006]. 

Most recent results have shown that gradient boosted trees typically either outperform or are on-par 

with neural network approaches when it comes to structured tabular data. We observed that most recent 

results in our prior-art study were tree based approaches. Decision tree based approaches are faster to 

train and have fewer hyper-parameters to tune. They also have the advantage of being explainable 

through feature importance. Deep neural network models are very data hungry, and can outperform 

other approaches when there is sufficient data, decision tree-based ensemble methods typically win for 

smaller (< 100K samples) datasets. However, while expensive without much benefit for small datasets, 

deep neural network models can be pre-trained using, e.g., simulation data and then through transfer 

learning tuned for the varied scenarios where they are deployed. These advantages of the neural network 

class of models motivated us to explore their efficacy and compare them against decision tree based 

ensemble methods (RF and XGB) for our prediction task. The data we have is time series and LSTM is 

an approach that is designed to natively handle this through its recurrent network architecture. LSTM 

models, however, have a large number of parameters, and require even larger datasets to learn from. 

The RF and XGB models use 350 estimators, max depth of 25 and min samples per leaf of two. The 

MLP uses a two hidden-layer architecture (30, 15) and LSTM uses a two layer (30, 30) architecture. 

We use the ReLU activation function and categorical cross-entropy loss function for training. 

The baseline we use to evaluate our models is a persistent prediction baseline, where the next bitrate is 

predicted to be the same as what the previous was. Such a prediction for time series data could be useful 

for slow changing networks. However, in real networks under dynamic conditions the bitrate is 

frequently changing, which makes using persistent prediction inapplicable. 

4.1.3.3.4. Experiment setup and Data collection 

An ns-3 simulated network is used to generate data to train and evaluate the prediction algorithms and 

to evaluate the prefetching algorithms. The evaluation of prefetching is done offline by using as input 

to the algorithm the output from the predictor, and the ground-truth from the data. Two separate datasets 

have been generated from a simulated urban mobile network deployment scenario. We use the ns-3 

DASH module implemented by Vergados et al. [DJGIT] to simulate the DASH client-server interaction 

for video segment requests and response. This implementation contains several adaptive bitrate 

algorithms at the DASH-client. We chose the FDASH [VERGAD16] algorithm as it has been shown 
by these authors to provide higher video rates, reduce buffer underflows, and prevent unnecessary video 

resolution changes compared to the state-of-the-art. It is important to emphasize here that our approach 

can handle any ABR at the client as long as it has trained on that data.  

The simulation setup consists of 12 base stations (four cell sites with three gNBs each), and uses carrier 

aggregation with three component carriers of 20 MHz to provide a maximum downlink bandwidth of 

60 MHz, which can reach an aggregated downlink bitrate of up to 225 Mbps. A remote video server 

hosts the DASH server. A variable number of users (between 27 and 68) move between these gNBs 

with velocities ranging between 1.4–5.0 m/s (walking/cycling speeds). Each user in the network is 

watching one of the 10 videos that are currently being streamed. The user’s video stream play times are 

within 10 seconds of each other, representing realistic behavior of live streams that are viewed within 

small delays of the actual event. The videos are streamed at 50 frames per second and each segment 

contains 8~seconds worth of video. The choice of segment duration and frame rate are motivated by 

typical settings for the chosen use-case.  
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Several hundreds of thousands of seconds of video playback data was generated from clients streaming 

videos. After processing the data into aggregation and prediction windows we had around 80,000 

samples for the ML models to train on, and 20,000 samples to test on. After training and testing the ML 

models, the entire predictive prefetching process was evaluated using the around 17,000 samples of 

evaluation data. 

4.1.3.3.5. Exploratory data analysis 

 

Figure 18 Correlation coefficient heatmap between input and output features. 

Before we begin training prediction models with the data, it is essential to characterize the data and 

understand the properties of the features in them. To understand the relationship between input metrics, 

as well as between the input and output metrics, we plot a heatmap of the Kendall correlation 

coefficients between them. The Kendall score captures the strength of the monotonic relationship 

between variables. Since several observed metrics (e.g. bitrate and MCS) are ordinal values we use a 

rank based metric, Kendall score. Kendall is also known to be better than Spearman at capturing 

correlations in data that have rank clashes. In Figure 18, the bottom row (next bitrate) represents the 
output metric, and the rest the input features. We see several strong correlations between the input and 

output features, indicating the predictive power of the input metrics. We also see strong correlations 

between input features themselves, indicating some redundancy in the features.  

4.1.3.3.6. Model Evaluation 

The features available in the dataset consist of DASH metrics and RAN metrics observed at the mobile 

edge. The RAN metrics can be made available to network functions at the edge through the RNIS 

function. The DASH metrics can be made available through a proxy at the edge between the DASH 

client and the DASH server. We study the importance of each set of features by training the models on 

three different sets containing i) DASH and RAN metrics, ii) only DASH metrics, iii) when we have 
both DASH and RAN metrics but do not have historical information of last bitrate. Feature set i) 

includes all features observable, feature set ii) removes RAN features to see how much the additional 
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gNB level observability adds to the prediction, and the feature set iii) is used to assess how much of the 

predictability power of the models come from just the last sample of bitrate.   

 

Figure 19 Comparisons of model performance for bitrate prediction tasks. 

Figure 19 shows the results of evaluation over RF, XGB, MLP, and LSTM models for the three different 

feature sets. We use prediction accuracy as the metric for comparison between models and the baseline. 

Prediction accuracy was chosen since the cost of misclassification between classes is the same in the 

considered scenario. We see that all models have similar performance with a difference of at most 3% 

in prediction accuracy. Bitrate prediction using these models increases the prediction accuracy by 

around 20% from the baseline shown as a black. 

Since the difference between accuracy with DASH+RAN features and only DASH features are small, 

it indicates that the contribution of the RAN features over the DASH features is small. Comparison 

between DASH+RAN and DASH+RAN-last segment history, also indicates that there is redundancy 

in the features that can contribute to prediction, even when the last segment value for bitrate is not 

available. This is important because it indicates that the model can learn to predict the bitrate in a non-

trivial way using the network and client state, even when the new bitrate is not correlated with the 

previous bitrate. This improvement over the baseline is expected to be even higher in more dynamic 

networks, where the rate of change of network state is even higher resulting in a lower correlation 

between requested bitrates. 
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Figure 20 Ground truth normalized confusion matrix for RF and MLP predictions. 

 

Figure 21 Feature importance for different sets of metrics. 

Figure 20 plots the normalized confusion matrix for RF and MLP. The maximum difference between 

the true positives between bitrate classes is at most 21% for MLP and 13\% for RF. The confusion 

matrix shows that the prediction accuracy of the models is not swayed by very high and imbalanced 
true positives of select classes. 

One of the advantages of RF or XGB is their inherent model interpretability through feature importance. 

Figure 21 shows the feature importance graphs for XGB for DASH+RAN, and the DASH+RAN-last 

segment history feature sets. We omit the graph for RF since the order of features remains the same and 

XGB feature importance shows the additional contribution of each feature over the previous, as opposed 

to RF, where multiple redundant features are shown to have the same importance.  

When Last bitrate is available, it seems to be the most important feature. This is indicative of how the 

baseline of next is the same of previous still gives us a close to 70% accuracy. However, when that 

history is removed, we still get similar accuracy but the contribution of feature importance is distributed 

over all other existing features. As mentioned before, this reinforces that even when the rate of change 

of bitrate is high, the model can predict without the assistance of Last bitrate.  
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4.1.3.3.7. Summary 

We have seen that all four models we evaluated have similar performance, with all of them showing a 

prediction accuracy increase of around 20% over the baseline. Through evaluation over different feature 

sets we learnt that the models are able to learn changes in the state, and do not need the history of 

number of segments and bitrate from the last window. The decision tree-based models, RF and XGB, 

have the advantage of interpretability, while the neural network models have the advantage of transfer 

learning over varied deployments. We see that using LSTM did not offer any advantages in this scenario 

over a simpler MLP neural network. This could be because of the much larger number of trainable 

parameters in an LSTM model, which requires a larger dataset to train on. While there is no clear 

winning model to use from just the metric of prediction accuracy, the advantages of using neural 

network models are far reaching to accumulate the capacity to represent and learn and then generalize 

these learnt structures through transfer learning.  

4.1.3.4. Integration in the architecture 

 

Figure 22 Outline of the AIF for predicting general and application specific user performance. 

To integrate the method into the AI@EDGE architecture, we map the inference model into an AIF. 

Figure  illustrates the design of the AIF for predicting general and application specific user performance.  

The AIF mainly consists of three components, which are the inference model and the data exchange 

interface, and the inference interface. The inference model is the core of the AFI.  The model could be 

trained based on four potential architectures: RF, XGB, MLP neural network, and LSTM, which are all 

better than baseline. As for the data exchange interface, the IF3 processes two categories of data: low-

level RAN data and high-level DASH application data, the details are shown in Table 1. Last but not 

the least, the IF4 outputs the predicted result. 

4.1.4 Optimising resource scheduling with machine learning 

The vast deployment of connected devices and IoT networks, both in industrial and consumer settings, 
requires fast, adaptable and efficient management policies to handle the resources among these 

heterogeneous and complex networks. Managing those resources implies solving optimization 

problems that are combinatorial in nature. Traditional methods for finding feasible solutions to such 

problems rely on human-crafted heuristics, which are often one-sided and sub-optimal, leading to waste 

of unnecessary resources. Moreover, artificial intelligence promises to develop more holistic 

management policies on the basis of learning agents and data-driven methods, that on the basis of 

stochastic processes are able to adapt to larger problem instances. Traditional machine learning methods, 

and the more recently developed field of deep learning, were geared to process fixed input/output 

structures (such as images, tabular data, and text) and remain unfit to process graph-structured data. 

Novel machine learning methods specifically developed towards processing graph-structure data can 
handle varying size of input/output sequences and enable devising more holistic policies to manage 
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such resources [Vesselinova’20]. However, the applicability to such methods to managing 

heterogeneous network resources remains vastly unstudied.  

4.1.4.1. Objectives 

Networked systems are per definition graph structured. Previous machine learning, and more 

specifically, deep learning-based methods to manage resources among devices in the network are only 

applicable under certain limitations, such as fixing the network size (in terms of number of devices), or 

completely ignoring the underlying topological structure of the network in the learning process. The 

main goal of the present subsection is to evaluate the applicability of devising such graph neural network 

(GNN)-based models towards managing complex network resources. In particular, we present a suitable 

GNN model to serve as basis for devising such network management policies under the supervised 

learning setting. 

Key evaluation aspects are the generalization to larger problem instances (in terms of the network size) 

and the inference time from the GNN based systems according to the respective network service 

requirements. More specifically, we aim at evaluating if a GNN model trained on small scale problem 

instances, for which the optimal solution can be computed using a constraint optimizer, can scale to 

much larger and complex problem instances on the basis of supervised learning. We do this by tackling 

a challenging problem proven to be NP-hard: the interrogation of battery-free sensor tags that employ 

backscatter communication in Internet of Things (IoT) networks [Perez-Penichet’20]. This problem was 

selected due to: i) the dynamic nature of the problem, in which any change in the number of IoT devices 

or sensor tags present in the network yields a completely different problem instance (for which a new 

solution must be computed); ii) the fact that optimal interrogation schedules require exploiting the graph 

structure of the IoT network to compute the solution; iii) the potential of recent backscatter 

communication devices to become one of the dominant sensing techniques in upcoming decades; and 

iv) its relation to use-case 2 of the project (“Secure and resilient orchestration of large (I)IoT networks”). 

Finally, the results of this subsection in terms of the learning models, will serve as basis to apply 

learning-based methods to other combinatorial optimization problems in the networking domain and 

under the scope of the AI@EDGE project.  

4.1.4.2. State-of-the-art 

4.1.4.2.1. Machine Learning for Combinatorial Optimization 

Machine learning (ML) applied to solving traditional COPs has seen a surge in the past years 

[Vinyals’15, Dai’17, Li’18]. In contrast to traditional heuristics, an ML system can find hidden patterns 

in the data through supervision or self-interaction considering multiple objectives, which allows it to 

better direct the search when solving the COP [Vesselinova’20, Bengio’21]. Moreover, recent advances 

in Graph Representation Learning (GRL) and graph neural networks (GNNs) [Scarselli’2009, 

Gilmer’17, Kipf’17, Velickovik’18] allow to leverage the advantages of deep learning for processing 

graph-structured data. In contrast to other ML approaches, GRL can exploit the structural properties of 

the topology and can handle varying input and output sequence lengths. ML methods have been applied 

COPs over graphs in the past years [Veselinova’20], for both reinforcement [Dai’17, Manchanda’20], 

and supervised learning [Vinyals’15, Li’18]. Vinyals et al. [Vinyals’15] implement an attention-based 

sequence-to-sequence model that learns from optimal solutions and solves the traveling salesman 

problem. Likewise, Li et al. [Li’18] employ GNNs [Kipf’17, Defferrard’16] to solve three traditional 

COPs with a supervised approach. 
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4.1.4.2.2. IoT Backscatter Sensor Networks 

Internet of Things (IoT) has positioned itself as one of the most disruptive technologies by enabling 

industrial and consumer end-devices to communicate over internetworking. Sensor networks have 

gained increased attention in recent years partly due to the introduction of low-energy bidirectional 

communication capabilities such as low-power radios and backscatter communication [Liu’13, 

Kellog’16, Perez-Penichet’16]. Particularly, battery-free sensor tags are components that leverage 

backscatter communication to transmit sensor values to their hosting IoT device when assisted by an 

external unmodulated carrier (a wireless radio signal) [BEN94], [Hoch97]. Combining the low-power 

sensing of the sensor tags with the IoT devices’ internetworking has the potential to unveil novel 

application areas with high societal, environmental, and industrial relevance — e.g., more accurate air 

quality, temperature and humidity monitoring, smarter logistics and warehouse management systems, 

and agricultural smart irrigation management systems. 

Backscatter communications enable new wireless devices that harvest energy from their environment 

to operate without batteries [Liu’13, Wang’17, Hessar’19]. Recent advances have demonstrated how 

battery-free backscatter devices – tags for short – can seamlessly interoperate with unmodified 

commodity wireless devices [Kellog’16, Perez-Penichet’16]. For battery-free tags to send and receive 

information from an IoT node, they require an external RF signal---an unmodulated carrier---provided 

by a second IoT node. Every tag is associated with (or hosted by) one IoT device responsible for 

collecting its sensor readings.  Every IoT node in the network may host zero or more tags. The IoT 

devices in the network are equipped with radio transceivers that support standard physical layer 

protocols such as IEEE~802.15.4 or Bluetooth. They are able to provide an unmodulated carrier (by 

using their radio test mode [Perez-Penichet’16]) and employ a time-slotted medium access mechanism. 

The duration of a timeslot is sufficient for an IoT device to interrogate one tag by transmitting a request 

to the desired tag and receiving the response a short interval after while a second IoT node provides an 

unmodulated carrier, as demonstrated by Pérez-Penichet et al. [Perez-Penichet’20]. Finally, at least one 

of the IoT devices is connected to a cloud or edge server where the interrogation schedule can be 

computed. 

4.1.4.2.3. Scheduling Battery-free Tags in Sensor Networks 

Generating a feasible schedule for a given sensor network topology is an instance of a combinatorial 

optimization problem (COP). Computing an optimal solution using a constraint optimization solver is 

possible only for small problem instances (low number of IoT nodes and/or sensor tags) but takes a 

prohibitively long time for practical network deployments. Moreover, current heuristics are able to 

compute interrogation schedules in the order of seconds, even for large problem instances, but suffer 

from sub-optimal behavior. ́Perez-Penichet et al. demonstrate TagAlong, a complete system with a 

polynomial-time heuristic to compute interrogation schedules for backscatter devices [Perez-

Penichet’20]. TagAlong exploits knowledge of the structural properties of the wireless network for fast 

scheduling. However, TagAlong’s carefully designed algorithm produces wasteful suboptimal 

schedules, especially as the network topology size increases (in terms of number of IoT devices and 

number of tags). Van Huynh et al. [Huyn’18] employ numerical analysis to optimize RF energy 

harvesting tags. Carrier scheduling resembles the Reader Collision Problem in RFID systems [Yang’11, 

Yue’12] in that both need to avoid carrier collisions. These works focus on the monostatic backscatter 

configuration (where the carrier generator and receiver are co-located). The bi-static configuration leads 

to a different problem, and our focus is on resource optimization rather than mere collision avoidance. 

4.1.4.3. Method Overview 

The network management problem selected is the interrogation of battery-free sensor tags in large-scale 

IoT networks. The battery-free sensor tags require a schedule to communicate with their hosting IoT 

node through backscatter communication.  
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4.1.4.3.1. Interrogation Schedule Constraints 

The properties of backscatter communication impose physical constraints on the way tags are 

interrogated. First, within a timeslot, a tag can be interrogated by its host if and only if exactly one of 

its neighboring IoT devices provides an unmodulated carrier. Multiple incoming unmodulated carriers 

may cause disrupt the tag-to-host communication [Perez-Penichet’20]. Similarly, the limited 

communication range of the battery-free tags forces them to be interrogated exclusively by their hosts, 

which must be located nearby. Note that timeslots are permutation invariant, which implies that one can 

arbitrarily shuffle the order in which the timeslots appear in the schedule. Because of this and other 

symmetries, the scheduling problem typically has multiple optimal solutions. For more details, please 

refer to [Perez-Penichet’20]. 

 

Figure 23 The scheduler takes a graph representing the network topology as input and produces a schedule. A schedule 

directs IoT nodes (v) to interrogate every battery-free tag (T) in the network with minimal resources by reducing the number 

of timeslots (s) and carrier slots (C). 

4.1.4.3.2. ML System Design 

The network of IoT nodes has the ability to collect link state information to determine the connectivity 

graph among themselves. This information is relayed to the cloud server, where it is, together with the 

tag-to-host mapping, used to assemble the graph representation of the network. Our scheduler uses this 

graph representation to produce a schedule, as depicted in Figure 23. An interrogation schedule consists 

of one or more scheduling timeslots, each assigning one of three roles to every IoT device in the 
network: Provide an unmodulated carrier (C), interrogate a sensor tag (T), or remain idle (O). The goal 

of the scheduler is to generate an interrogation schedule that queries all tags while requiring as few 

carrier generation slots and timeslots as possible. The number of carriers is the most important aspect 

affecting the overall spectral efficiency and energy consumption of the system. The ML-scheduler takes 

the network’s topology graph as input and generates a corresponding interrogation schedule (see Figure 

23). We adopt a supervised learning deep neural network approach instead of other paradigms such as 

reinforcement learning. This choice is mainly motivated by two facts. First, we can leverage the optimal 

scheduler to produce a training set necessary for a supervised approach. Second, it is straightforward to 

cast the scheduling problem as a classification problem, which is generally tackled with a supervised 

approach.  

The ML-scheduler performs node classification on every IoT node to predict the role each of them will 

play within every schedule timeslot: remain off (O) or interrogate a tag (T), which corresponds to class 
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0, and generate a carrier (C), which corresponds to class 1. We seek to obtain the shortest possible 

schedule with the fewest number of carrier generation slots (C). The properties of the problem allow it 

to be modeled as an iterative per-node multi-class classification problem. The iterative nature of the 

approach is depicted in Figure 24: at each timeslot, the ML-scheduler performs a one-shot prediction 

for the IoT nodes in the topology assigning them to either class 0 or class 1. After this prediction, the 

tag information in the wireless network is updated: those tags that were predicted to be queried are 

removed from the topology. The new network state is fed to the same ML-scheduler to perform the 

prediction for the next timeslot, and the process is repeated until no more tags are present in the network.  

 

Figure 24 The ML-Scheduler iteratively performs node classification on every node, one timeslot at a time, removing 

scheduled tags from the topology and repeating the process until no more tags remain. 

The ML scheduler consists of a stack of GNN blocks followed by a fully-connected neural network 

layer to perform the one-shot node classification. The training of the ML scheduler is done in an offline 

manner and can be performed where resources are not so critical, such as the cloud or the far Edge. 

Once the model is trained, it can be deployed at the near Edge to perform inference according to the 

procedure depicted in Figure 24. 

4.1.4.4. Evaluation 

To evaluate the feasibility of GNN to learning topological structural properties of wireless sensor 

networks, we first train the ML scheduler using small-size problem instances (networks with less than 

11 IoT devices and less than 14 sensor tags) for which we can compute the optimal schedule using a 
constraint optimizer. One the training phase is over, we then implement the trained ML scheduler and 

evaluate its scalability to much larger, unseen, problem instances.  

4.1.4.4.1. Training the ML Scheduler 

We generate problem instances with topologies having N nodes and T tags of combinations from all 

possible combinations of the sets N = {2, 3, 4, …, 10}, and T = {1, 2, 3, …, 14}. The topologies are 

generated using the random graph generator from NetworkX [Hagberg’08] and the tags are placed 

randomly uniform among the nodes. Multiple tags per nodes are allowed. For computing the optimal 

solution, we use MiniZinc constraint optimizer [Nethercote’07]. To break the symmetry in cases where 

multiple solutions are available, we add additional optimization objectives to prioritize assigning carrier 

to nodes with lower node-IDs and to schedule as many tags as early as possible in the interrogation 

schedule. Note that random sequential node-IDs and tag-IDs were thus included. Since the slotframes 

of the interrogation schedules are permutation invariant and we include the complete tag information in 

the topology before performing the node classification, we can treat each separate slotframe of all the 
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problem instances computed by the constraint optimizer as a separate data sample in the supervised 

classification setting. In total, around one million input-target data samples were generated (topology-

schedule pairs). The data samples were randomly shuffled before they were split into a train-set and a 

test-set, were both sets contain instances of topologies from all considered sizes. 

For training we use a 20-80 test-train set split of the problem instances. We train the Inference Module 

with the Adam optimizer [Kingma’15] on the basis of mini-batch gradient descent with standard 

optimizer parameters and an initial learning rate of 10−3. As loss function we use the weighted multi-

class cross entropy loss, whereby the weights are estimated according to the class distribution present 

in the train set. We implement learning rate decay by 10% every five epochs, and early stopping after 

three periods of 25 subsequent epochs without minimization of the test-loss, whereby we re-set the 

learning rate to the initial value each time an early stop condition is reached to anneal the search space. 

We save the best performing model on the basis of the F1-score on the test set. The ML scheduler is 

instantiated using PyTorch and PyTorch Geometric, where more than 10 GNN layers were utilized for 

the model. We train the model using an NVIDIA Titan RTX (requiring only ∼3000 MiB of GPU 

memory) for 131 epochs (or 14.6 hours) before reaching the early-stop condition.  

Figure 25 shows the behavior of different training metrics. One can see that the learning rate restarts 

are responsible for the spikes in the graphs at approximately epoch 75 and epoch 115. These graphs 

demonstrate that the ML schedule is able to correctly predict the individual timeslots of the interrogation 

schedules and learn the topological dependencies that the constraint solver uses to produce the optimal 

schedules. The model achieves 99.82% accuracy, a carrier-class F1-score of 98.4% and is able to 

correctly compute schedules for 99.43% of the problem instances analyzed. The ML scheduler performs 

within 3% of the optimal scheduler in terms of the average number of carriers utilized in the 

interrogation schedules. 

 

 

 

Figure 25 Performance results after training the proposed GNN under the supervised learning setting using the optimal 

solutions from small problem instances. 
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4.1.4.4.2. Deploying the Scheduler for Larger Problem Instances 

After successfully training the ML scheduler, we compare its performance relative to the state-of-the-

art heuristic, TagAlong [Perez-Penichet’20]. We compute schedules for 1000 problem instances for 

each combination of number of nodes N={10, 20, 30, 40} and tags T={60, 80}. Compared to TagAlong, 

the ML scheduler is able to reduce the percentage of necessary carriers ∼ 10 % on average for large 

numbers of tags, as depicted in Figure 26. The ML scheduler is able to reduce the number of carriers 

by up to 40% for all number of nodes configurations. It worth noting that the optimal scheduler would 

require prohibitively long time to produce a solution to the candidate cases evaluated in this subsection, 

which yields it practically unapplicable.  

 

Figure 26 The ML scheuduler maintains an average saving of almost 10% in scheduled carriers while scaling up to four 

times the maximum training network size. Average percentage of carriers saved by DeepGANTT compared to TagAlong for 

various topology sizes and numbers of tags. 

The final factor that determines the real-world applicability of a scheduler is the computation time. The 

ML scheduler has an inference time that is always below 1.9 s and on average is 500 ms for the largest 

problem size considered, a radical improvement over the optimal scheduler and in the range of the 

benchmarked heuristic. While TagAlong runs faster, the absolute values are so small that the difference 

is negligible in practice.  

4.1.4.5. Integration in the architecture 

The integration of the proposed ML scheduler for generating interrogation schedules in large-scale 

wireless sensor networks is described in Figure 27. The ML scheduler consists of the GNN model that 

is either i) trained locally by the “Model Handler” using data samples from the “Training Data Handler”, 

or ii) updated with model parameters coming from another AIF instance upon receiving a re-

configuration flag through IF1. In principle, multiple instances of the AIF can be deployed in different 

geographical regions, and their global parameter update can be controlled through their “Model Handler” 

using AIF interfaces IF1 and IF4 to start and terminate the process and IF2 as secure channel to 

exchange model parameters. At inference, the only active module within the ML scheduler would be 

the “GNN model”, which received the network configuration information through IF3.1, and deliver 

the corresponding schedule to the wireless network through IF3.2. 

 

Figure 27 Integration of the ML Scheduler in the overall AI@Edge architecture with its respective interfaces. 
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4.1.4.6. Summary 

This section introduced a ML system that employs supervised deep learning to schedule a network of 

IoT devices interoperating with battery-free backscatter tags. The ML scheduler leverages recent 

advances in GNNs to overcome the challenges posed by the graph-structured nature of the problem and 

by variable-size inputs and outputs. It also exhibits strong generalization capabilities to problem 

instances up to four times larger than those used in training and can compute schedules, requiring on 

average 10% and up to 40% fewer carriers than an existing, carefully crafted heuristic, even for the 

largest problem instances considered. More importantly, the ML scheduler performs within 3% of the 

optimal on the average number of carrier slots while lowering computation times from hours to fractions 

of a second. Furthermore, the characteristic of the approach to deal with multiple solutions in the 

scheduling problem could have far-reaching implications in solving the broad class of graph-related 

NP-hard combinatorial problems using supervised ML techniques, and will lay the ground for future 

work within the project. 

 

4.2 Advanced support for AI-enabled applications 

4.2.1 Anomalous event detection with Federated Learning 

As a core step in a closed-loop automation system, we need to determine upon which event to trigger 

reconfiguration of the connect-compute platform. We refer to such events as anomalies. In particular, 

we identify as an anomaly whichever deviation from the nominal working conditions of the system. 

Anomalies can therefore be, for instance, attacks or infrastructure impairment states such as due to 

congestion or service degradation. 

Anomaly detection in SDN/NFV systems driven environments is a challenging task compared to legacy 

hardware-based networks due to a number of reasons; e.g., the multi-layered nature of softwarized 

networks, the introduction of new faults and vulnerabilities stemming from the decoupling of software 

from hardware, and their network provisioning and reconfiguration flexibility. Such environments do 

call for a data-driven framework rather than a model-based one, to scale with the multiple dimensions 

and large scales of virtualized infrastructure components’ monitoring data. 

In the frame of AI@EDGE, we are extending a preliminary framework [Ae] based on Long-Short-

Term-Memory (LSTM) AutoEncoders (AE), called SYRROCA (SYstem Radiography and ROot Cause 

Analysis), to include a larger variety of network nodes, both physical and virtualized environment, and 

also covering virtualized RAN nodes such as eNodeB, gNodeB, radio-front-end information and 

disaggregated RAN components. 

4.2.1.1 Objectives 

As there are large varieties of network components in both physical and virtualized forms, it is important 

to provide a framework to inspect and detect anomalies in a collective and non-centralized manner. In 

AI@EDGE, our goal is to implement and compare two methodologies for anomaly detection in  

computing environments: centralized learning and Federated Learning (FL). While the former is an 

adaption and application of [DIA20] to the AI@EDGE environment, in the latter training of ML models 

are carried out on nodes where the data exist. These nodes could be any network component, both 

physical or virtualized, that has data and compute powers to run the training process.  

In both cases, the training operations are coordinated and supervised by a single central node (the 

aggregator in the FL case), which is also responsible for aggregating the results obtained from the 

participating nodes. At the core of our framework, a LSTM ML model autoencoder will be used. The 

notion behind using LSTM and autoencoders is that LSTM is suitable for time-series  as it has the 
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capability of learning long-term dependencies between timesteps [Hoch97]. In the meantime, 

autoencoders present good mechanisms for detecting anomalies and outliers. 

4.2.1.2 State-of-the-art 

Before a system can detect anomalies and make the necessary adjustments to restore itself to the normal 

working conditions, the nominal state has to be identified. For distributed and multi-layered systems it 

is challenging to model nominal conditions for each component [Shaw02]. 

A well-known approach consists of the application of a set of association rules and frequent episode 

patterns to classify events as an anomaly or not. While rules tend to be intuitive, they are  inadequate to 

represent many types of anomalies, as is the case for softwarized networks due to the immense variety 

of faults and threaten. Inductive rule generation algorithms have been proposed to overcome this 

limitation, as for example genetic algorithms [Crosbie95]. 

Statistical theory outcomes are also widely used to detect anomalies. For example, in [YE01] the chi-

square test statistic value is used as a distance measure to detect anomalies: when an observation chi-

square value is greater than a fixed threshold, the observation is tagged as an anomaly. In [Stan02] 

authors present the Statistical Packet Anomaly Detection Engine (SPADE) as a statistical anomaly 

detection system. A simple frequency-based approach is used to calculate the ‘anomaly score' of a 

packet: the fewer times a given packet was seen, the higher was its anomaly score. Once the anomaly 

score crossed a threshold, the packets were forwarded to a correlation engine that was designed to detect 

port scans. [Pasch10] uses Markov models to characterize the “normal” behavior of the sensor network. 

In particular, a series of Markov models are developed and for each model, an anomaly-free probability 

law is estimated from past traces. Then, recent observation is studied with the Large deviations theory 

to understand if the empirical measure takes very unlikely values. 

With the growth in availability and in amount of monitoring data which characterize latest and future 

network, machine learning (ML) started to be applied to anomaly detection as well. 

When dealing with high dimensional data, one of the most widely used approaches is to project the data 

into a lower dimensionality sub-space, spot in this sub-space spontaneous clusters of data and then tag 

as anomaly those data which fall apart from the clusters. Principal Component Analysis (PCA) and K-

Means are the most used algorithms respectively for dimensionality reduction and clustering [Zang09]. 

For example, authors in [Munz07] trained a k-mean algorithm on unlabeled flow records to cluster 

normal traffic. Then, the distance from clusters centroids is used to compute samples anomaly score. 

Similarly, authors in [He17] develop a two-stage anomaly detection algorithm based on feature 

selection and Density Peak-Based Clustering to handle large-scale, high-dimensional, and unlabeled 

network data. In [George12] instead, first PCA is applied to the KDD99 dataset for network IDS, and 

then a Support Vector Machine (SVM) is used to classify anomalous and nominal samples. However, 
clustering-based algorithms showed to be sub-optimal, mainly for a high false-positive rate [Say12]. 

Furthermore, PCA is recognized to fail in capturing temporal correlation [Bra09] and in analyzing non-

linear correlated metrics. Even though several non-linear approaches were proposed in the literature, it 
is broadly recognized that Deep Neural Networks (DNN) are very flexible and they can introduce a 

theoretically infinite level of non-linearities by using non-linear activation functions. In anomaly 

detection, one of the most widely used architecture is the Deep AutoEncoder (DAE) one [An2015]. In 

[Sak14] authors demonstrate that AEs clearly outperforms PCA in terms of accuracy and computation 

time. They also show that autoencoders learn the normal state properly in the hidden layers and that 

they activate differently with anomalous input. 

In [Alawe18] authors propose a mechanism to scale 5G core resources by anticipating traffic load 

changes through LSTM and deep neural networks forecasting. They show that LSTM-based anomaly 

detection can be more accurate, thanks to its ability to store data pattern without degradation over time. 

[Mal15] propose a stacked LSTM architecture to detect anomalies within time series data by evaluating 

the deviation of predicted outputs based on a variance analysis. In [Ergen19], a compound architecture 
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is presented. Here, the LSTM network predicts regular system dynamics, and a support vector machine 

is applied as classifier for anomalies to realize an adaptable and self-learning detection mechanism. 

Federated learning has become a viable alternative to the centralized approach in ML in many areas, 

especially if data privacy is of a concern. In fact, Federated learning distributes the global model training 

process such that each learning participant’s data is used to train a local model, rather than aggregating 

large amounts and types of data into a central location. Recently, FL has been adopted in network 

anomaly detection and proposed in a plenty of state-of-the-art works. Nguyen et al. [NMMF] presented 

an autonomous self-learning federated learning-based anomaly detection approach for IoT devices 

named “DIoT”. It operates on device-type-specific communication profiles without human intervention. 

DIoT architecture consists of a security gateway to connect IoT devices to the Internet, and IoT security 

services. The anomaly detection component is integrated with a security gateway, which monitors the 

network for abnormal activity. A repository of device-specific anomaly detection models is maintained 

by the IoT security service where model weights updates from IoT devices are aggregated. Yurochkin 
et al. [YAGGHK] developed a probabilistic federated learning framework with neural networks. In a 

such  approach a global model is constructed by matching estimated local model parameters across data 

sources using the Bayesian nonparametric (BNP) model. BNP allows the local parameters to either 

match existing global ones or to create new global parameters if the existing ones are poor matches. Li 

et al. [LCLWC] proposed an autoencoder based anomaly detection technique at the server side for 

anomalous detection of local weight updates from the clients in a federated learning system. The idea 

is to generate low-dimensional surrogates of model weight vectors and use them to perform anomaly 

detection on client data.  In [ZCW], Zhao proposed a multi-task deep neural network federated learning 

(MT-DNN-FL) for network anomaly detection. It also performs traffic recognition and traffic 

classification. 

4.2.1.3 Overview of the method 

 

Figure 28 SYRROCA Framework 

SYRROCA is used to detect and characterize anomalies in softwarized network environments. Starting 

from metrics collected at both physical and virtual (container) levels, a methodology to detect anomalies 
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and present them is introduced to infer the running state of a virtualized network service. Through this 

methodology, it is not only possible to inspect the whole service, but also of their inner components 

(e.g. containers or VMs). Hence, supporting root cause analysis to explain network state deviations 

happening when particular network events and anomalies manifest.   

As represented in Figure 28, the SYRROCA framework processes metrics of component-specific 

groups (e.g., CPU-specific group) from different layers (physical and virtual) and uses one autoencoder 

cell for each group. An autoencoder is a multi-layer Neural Network (NN) composed of two blocks: an 

encoder and a decoder. The encoder reduces the n dimensions of the input to s dimensions (latent-space), 

while the decoder takes those s dimensions to reconstruct back the input. The AE is trained to learn how 

to reproduce the input vector X of n features by learning how to optimize weights and biases on the 

encoder and the decoder NNs to minimize the overall reconstruction error. It has been demonstrated 

that composing several encoder and decoder layers to build a DAE allows to effectively represent 

complex distributions [ZHO17]. 

AEs can be used to detect anomalies as the decoder block compresses the data input dimensionality. 

Assuming that the input data has a certain correlation level, it can be embedded into a lower-dimensional 

subspace, where anomalous samples look significantly different from nominal samples, which makes 

anomalous samples reconstruction error increase significantly. AEs are considered an auto-supervised 

NN, as the learning target value is the input itself, so no labels are required in the training phase. 

According to the type of dataset the AE has to analyze, several types of NN can be chosen. When it 

comes to dealing with time-series problems accounting for the temporal dimension, Recurrent Neural 

networks (RNNs) are generally used. However, they suffer from the vanishing gradient problem 

[BEN94], preventing long-term relations to be learned. As a solution, Long-Short-Term (LSTM) RNN 

has been proposed [Hoch97]. LSTM enforces constant error flow through the internal states of special 

units called memory cells by employing multiplicative gates which allows learning of long-term 

sequence correlations and modeling complex multivariate sequences [MAL15]. 

In SYRROCA, after an anomaly is detected, the framework performs an in-depth analysis of the AEs 

reconstruction error to identify the set of most deviated metrics. This analysis is then used to produce 

the so-called radiography visualization along with a state graph multi-layer representation. While the 

former compactly visualize the propagation of anomalies across layers, the state graph aims at 

establishing and characterizing the deviated state of the system as the basis for a re-orchestration 

algorithm. Our anomaly detection framework is extending SYRROCA to level up to AI@EDGE 

requirement. The framework will reflect the decentralized nature of the Edge components by applying 

FL to train SYRROCA instead of its centralized approach to ML. 

As already mentioned, and represented in Figure 28, to have a greater control on training, data features 

collected for training are grouped by resource type. In the experiments of [DIA20], CPU, network, 
memory and file system related metrics are used. Likewise, additional sources of metrics can be safely 

added to the framework with no restriction. Data also has to be re-scaled to eliminate the huge variation 

in magnitudes of feature values by using the normalization technique (in contrast to standardization 
rescaling technique), which transforms the original metrics so that all values fall within the [0; 1] range. 

During the training phase, the framework builds a model of the system during the delivery of a 

virtualized service. Training dataset is split into several sub-datasets each of them fed to a dedicated 

deep AE. AEs are trained with a dataset built in nominal conditions, and covering a sufficient period, 

so that they can learn an abstract representation of what is considered to be a nominal state. 

On-going work is on the extension of the preliminary centralized framework described in [DIA20] 

toward its distribution across the network using a federated learning (FL) approach. The motivation is 

to, on the one hand, better scale with the large amount of data expected hence to envision on-line usage 

of the framework and, on the other hand, ensure low-latency processing and detection. The resulting 

FL-based anomaly detection AIF architecture, should therefore, leverages on multiple different AIFs: 
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edge AIFs for data pre-processing; centralized and intermediated AIFs for LSTM neural network (NN) 

parameter training and update.  

Figure 29 represents the envisioned FL-based anomaly detection AIF systems.  

 

Figure 29 Graph representation of decentralized Distributed ML 

The anomaly detection AIF system is therefore functionally composed of the following subsystems: 

• a central FL server, responsible for the aggregation and update of a global ML model. Also, it 

is responsible for the initiation and orchestration of the training process. The central FL server 

can also be distributed hierarchically with multiple central FL sub-servers, depending on the 

deployment strategy. 

• the edge AIFs. The AIF instances are distributed and are collectively responsible for training 

the model where each AIF trains part of the data. The training process starts initializing a global 

model, which is then distributed to all participating AIFs in the platform. Each AIF trains the 

model following a federated learning (FL) logic, on the part of the data that is specifically 

available to it, for a predefined number of epochs. Inference can also happen at the AIF level.  

• A data-lake system, made accessible to all AIFs with even rights on the data, i.e., all AIFs 

access the same type of data and are configured to process different portions at different AIF 

instances based on load-balancing policies. 

4.2.1.4  Integration in the architecture 

We aim at integrating the FL-based redesigned implementation of SYROCCA in the AI@DGE 

functional and experimental architecture. Most of the AI@EDGE use cases are composed of distributed 

entities that communicate to each other at different levels (i.e. near-edge, far-edge and the cloud). At 

the ground level, for example IIoT at a factory, each end-devices group share the same characteristics 

and can produce the same type of data. ML training is applied using LSTM DAE which groups each 

monitored resource metrics together into a single autoencoder within the framework.     

We can conceive two different data-partitioning approaches to deploy the anomaly detection AIF 

system, depicted in Figure 30. 



 

 

D3.1 Initial report on systems and methods for AI@EDGE platform automation 

 

 

AI@EDGE (H2020-ICT-52-2020)  55 

 

 

Figure 30 Anomaly detection FL-based AIF   

4.2.1.4.1 Flat load-balancing approach  

In this approach, the complete data-lake of the connect-compute is made available to edge AIFs. Edge 

AIFs act as an over-the-top computing system that can automatically scale as a function of the 

monitoring data rate and number of running nodes.  

There is a dedicated layer for managing data collection and monitoring. The layer would have a 

repository for storing collected metrics and offer mechanisms for data analysis and integration, hence 

forming the platform data-lake. Indeed, at the heart of the layer, there would be a parameter scrapping 

system (Prometheus platform for example). Such a layer provides the data-lake needed for distributed 

anomaly detection AIFs. The metric monitoring layer and the ML algorithm either could reside at the 

edge or in the cloud where they will benefit from the power it offers; it is a matter of trade-offs between 

resources availability and communication constraints. 

In this approach AIFs are used to absorb the anomaly detection load, with equivalent AIF instances, 

and no locality constraints on the data made accessible to each AIF instance. 

During the execution of distributed ML algorithms, they may have to stop in order to exchange 

parameter updates (i.e., synchronize). In order to reduce the time spent waiting, it is desirable to load-

balance the work on each AIF. This is especially important in our case as the datasets exhibit non-iid 

data and as data is collected from different physical and virtual components that are deployed to perform 

different tasks in different environments. For example, gNodeB metrics, and function components of 

the 5G core network.  

The load balance should guarantee the loading of data to AIFs to maximize their participation in the 

training process and reduce the stragglers effect (delaying the update of the global model) which brings 

down the performance of the whole system.   

4.2.1.4.2 Device-specific hierarchical approach 

As explained in D2.1 [D2.1], federated Learning is a distributed ML paradigm where several nodes are 

collectively participating in training global ML models locally under the orchestration of a central server. 
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Its aim is to produce a generalized model that captures all the different distributions associated with 

each node’s data, without the need for the data to leave the node. Indeed, FL produces a single output 

for all the participating nodes, and therefore, it does not adapt the model to each node completely. 

Especially in heterogeneous settings, where the underlying data distribution of nodes are non-iid, the 

performance of the global model obtained by minimizing the average loss could be poor once applied 

to the local dataset of each node.  

In such an approach, following the scheme in Figure 30 , an AIF learns on data communicated through 

it by IF4 interface, whose data should exist on the same node where the function runs. Moreover, the 

ML global model (i.e. weight and bias parameters) is also sent to the AIF through the IF3 interface and 

it is used to carry out the training. The result of the training is a ML local model that is sent over the 

IF3 interface for the aggregation with the other FL AIFs that are part of the FL training framework. As 

a result, the Global model and local models are exchanged multiple times during the training process. 

Indeed, there should be an initialization phase before the AIF start to learning. The global model has to 

be initiated with given parameters through IF1, together with the hyperparameters that control the 

duration of the operation, the learning rate and other house-cleaning configurations. Modern ML 

development frameworks provide for the utilization of accelerations. As such, our AIF can benefit from 

that by running on accelerators and exchange signals through IF4 interface. The result of such 

operations by the AIF is a ML model that is ready for deployment as an inference AIF which is used 

for anomaly detection. 

Differently from the flat load-balancing approach where different edge AIFs work on the same type of 

data, a device-specific approach can therefore be designed with differentiated AIF data profiles. In this 

way, each group of devices belongs to a specific FL instance to which all devices of the same types are 

attached. For instance, we would have one group for each class of IoT device, one for gNodeBs, and 

one for 5GCN function instances. 

As the expected number of nodes can be high, the AIF system can be made more scalable passing   from 

a baseline two layers aggregation to three layers aggregation, where each group of nodes of the same 

type (e.g., gNBs or UPFs) is clustered. Each cluster will have a cluster central server residing in the 

middle of the nodes of that cluster and a central server above it in the hierarchy. In such a hierarchy 

setting, the cost of communication will be reduced. The AIFs will receive data through IF4 interface.  

The exchange of the ML model will happen via IF3, while the ML control plane interface used to 

exchange model parameters. The IF1 is the northbound interface used for (re)configuring the AIFs, i.e. 

setting hyperparameters, accuracy value, etc. IF3 could be also used to exchange mutual parameters 

among middle FL server, in case a collaboration between those servers is envisioned. 

4.2.2 Predictive approaches for radio context and connection performance for distributed 

and federated learning 

One of the benefits provided by the AI@EDGE platform is the convergence of communications 

resources provided by mobile networks and computing resources enabled by the edge systems. This 

compute-connect paradigm facilitates the applications of artificial intelligence/machine learning 

techniques. The role of AI/ML will be two-fold: on the one hand, this paradigm will facilitate the 

proliferation of online AI services (network for AI); one the other hand, it will embed AI functionality 

to optimize the network operation (AI for network). As a focus of the latter, predictive radio context 

and performance will use machine learning techniques to provide radio prediction, and then apply this 

predicted information to promote the operation of distributed and federated learning operated in this 

system. 
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4.2.2.1 Objectives 

Federated learning and distributed learning need to exchange information frequently, such as the 

distribution of a universal model to the participants, the transmission of a partially trained model to 

other nodes, and essential control signaling and management messages. The origin of Federated 

learning and distributed learning comes from the Internet, where the default connectivity among the 

learning nodes is implemented with wired links such as optic fiber and LAN. The properties of a wired 

link, including transmission rate, delay, packet error rate, and availability, are regarded as deterministic. 

Moreover, these parameters keep constant for a long period on the magnitude of minutes, hours, and 

even days until the network status varies, for example, because of the maintenance of the equipment or 

the transmission link. When these learning methods migrate to wireless networks, the learning nodes 

suffer from a dynamic environment.  To be specific, a learning node could be located at the cell edge, 

where the received signal is weak, while the co-channel interference from its neighboring cells is strong, 

leading to low transmission rate and high packet error rate. In contrast, a learning node close to the 

serving base station has much higher data rate with high reliability. If a learning node stays at the cell 

edge and does not move for a long time, it becomes a bottleneck and degrades the performance of the 

whole system carrying out federated learning and distributed learning. Does the system have the ability 

to predict such nodes and stop the learning tasks on these nodes? In addition to the radio context in 

large-scale granularity, wireless channels vary randomly quickly in small-scale granularity on the 

magnitude order of milli-second due to the constructive and destructive interference of multi-path 

components. Such dynamics has a strong impact on the performance of a transmission link, which in 

turn determines the efficiency of the learning system. If the radio context can be known beforehand 

with some predictive approaches, the learning system is able to do some adaptive methods to improve 

the efficiency, robustness, and performance of federated learning and distributed learning at the network 

edge. 

At the initial stage, two steps can be expected: (1) finding suitable ways to get the data for training and 

testing machine learning (through statistical modeling or measurement, if possible); (2) an investigation 

of the feasibility of machine-learning algorithms.  

4.2.2.2 State-of-the-art 

Through modeling a wireless channel into a set of radio propagation parameters, two statistical 

prediction approaches – Auto-Regressive (AR) [Due07] and Parametric Model (PM) [ADEOGUN] – 

have been proposed. However, the modelling is fossilized, leading to a gap between these models and 

real channels, and – in addition – the parameter estimation process relying on complex algorithms such 

as Multiple Signal Classification (MUSIC) and Estimation of Signal Parameters via Rotational 
Invariance Technique (ESPRIT) [GARDNER] is tedious, harming its applicability in practical systems. 

As a classical AI technique, neural networks (NNs) [JIANG1] can avoid the parameter estimation thanks 

to its data-driven nature, and therefore attracts the interest from researchers in the field of channel 
prediction. Making use of its capability on time-series prediction, the predictors based on deep learning 

with advanced recurrent structures such as LSTM or gated recurrent unit (GRU) [JIANG] exhibit good 

predictive performance over channel quality, which is promising to be applied for this scenario. 

However, the current deep learning-based prediction approaches focus on the single-user mobile 

environment, which does not fit with the multiple learning terminals working simultaneously. In this 

project, therefore, the focus will be on the multi-user prediction for the setup of federated learning and 

distributed learning 

4.2.2.3 Overview of the method 

The link performance of wireless transmission heavily depends on the quality of wireless channels. 
Since a wireless channel is highly dynamic and time-varying, a transmitter always prefers to adjust their 

transmission parameters for better performance. With the assistance of channel state information (CSI), 

the transmitter is able to adaptively choose its parameters such as the transmit power, constellation size, 
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coding rate, transmit antenna, and precoding codeword to achieve great performance. If we can track 

and predict the CSI of all the links in a federated/distributed learning system, we can achieve better 

communication performance to guarantee the efficient operation of the intelligent system.   

4.2.2.4 Integration in the architecture 

 

Figure 31 Schematic diagram of predictive radio context and performance optimization for feaderated and transfer 

learning, which is divided into two phases: learning and prediction. 

In the AI@Edge platform, the consumers of the computing and AI capabilities offered by the edge are 

usually mobile and portable equipment connected through wireless connectivity. To realize predictive 

radio content and performance approaches, these mobile equipment or personal devices need to run at 

least one AIF to assist the main predictive functions to train a universal model (for federated learning 

or transfer learning) and preprocess the required data. The universal model is contained by one or more 

AIFs running generally at radio access site (the far edge of the AI@Edge platform) to control the radio 

resource and optimize the performance of all mobile nodes in the coverage of one site. It is possible that 

the universal model is performed in a higher level, e.g., the local access site (the near edge of the 

AI@Edge platform), to obtain a wider view of the communication network and computing resources, 

in order to optimize, e.g., the inter-cell interference, to improve the performance at the cell edge. It is 

possible that a set of AIFs can be deployed in a distributed manner in the near edge and the far edge to 

collaboratively make decisions.  

In such a scenario as illustrated in Figure 31, the first step is the AIF operating in the far edge or the 

near edge that uses IF4 to align the AIFs on mobile equipment to trigger a federated learning process, 

while the distributed AIFs receive the configuration information via their IF1 in a master-slave fashion. 

The AIFs need to use the IF2 to get an initial universal model for training, and then continuously send 

the updated model parameters to the universal model(s) to iteratively update its parameters via IF3. 

Once the training of the universal model is converged, the master AIF at far/near edge switched from 

the training mode to the prediction mode, and align this process via IF1 and IF4. During the prediction, 

the AIFs dedicated to predicting the radio context and performance needs to continuously report the 

radio context information to the AIF used for resource management and system operation since the 

radio environment is time-varying, especially in high mobility. Then, the data pipeline is required for 

the AIFs to transfer the information through IF3; otherwise, the information will be aged and degrade 

the system performance.  
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The main functionality of the aforementioned AIFs is to predict the radio context and its associated 

performance. It is possible that more AI/ML-based radio resources control and optimization functions 

can be jointly applied. These AIFs can be allocated distributedly, one or serveal AIFs per mobile devices, 

at the far edge, or at the near edge, based on what the function it is, e.g., inter-cell interference, 

scheduling, and adaptive modulation. Therefore, the AIFs for predictive radio context needs to send the 

up-to-date prediction to the AIFs for dedicated optimization. These kinds of information are better to 

transfer through IF1/IF4 for high reliability.  

4.2.3 Autonomous system operations and continuous learning processes 

The AI@EDGE project aims at the management of networks with minimal human interference. To 

achieve this goal, the usage of artificial intelligence is going to be very important. Artificial Intelligence 

methods consist of the usage of a dataset to train a specific model. This model will learn how to 

minimize a specific cost function. Traditionally, the training step is done offline before the deployment. 
This approach works well for a static environment. However, network conditions and statistics tend to 

change over time. For this scenario, the statistic dataset used to train the model will not represent the 

real environment resulting in a loss of performance. To improve the model performance, the usage of 

continuous learning appears as a learning paradigm used for the stream of data. This appears to be more 

suitable for the AI@EDGE environment. 

4.2.3.1 Objective 

The objective of this subsection is to describe the usage of federated learning in a continuous learning 

environment and to use this method to enable autonomous system operation. Federated Learning is a 

technique deployed in a distributed scenario where there are two components: the clients and the server. 

The former is composed of the clients (e.g., mobile phones, vehicles, IoT sensors, personal computers) 

that receive a global model from the cloud, train it using its data, and send to the cloud the model 

updates. The latter component of federated learning is composed of a central model that is responsible 

for generating a new global model based on the client update models. The usage of federated learning 

improves privacy performance as no personal data is sent to the cloud server. To implement continuous 

learning in a Federated Learning scenario, some updates on the traditional methods need to be 

implemented (e.g., solve the catastrophic forgetting problem and solve the asynchronous update 

problem) as described in the next section. The usage of continuous federated learning can enable 

autonomous operations by continuous monitoring of a status of a specific component of the network 

and use the models to help about what decision should be taken given the input of the models. As in 

federate learning there is one or more clients, each client can be deployed in a specific part of the desired 

system to be automated and can collect different types of data and do the learning step to improve the 

general model parameters. This general model will be used to help about what is the best decision to be 

made to improve the necessary system capabilities. Also, this federated learning algorithm will be 

combined with the proposed data pipeline system to enable the necessary granularity of data in the edge.  

4.2.3.2 State-of-the-art 

The usage of Federated Learning in continuous learning approach is a recent area of research. The 

combination of the distributed learning fashion of Federated Learning with the continuous learning can 

contribute to an efficient implementation of applications composed of AIFs in the AI@Edge network.  

In offline learning, the model is trained using a predefined dataset and, after the training step, the model 

is deployed and runs using a different dataset from the one used during training. In contrast with offline 

training, in continuous training approach the model parameter is updated in a online way which means 

that the model can train using a stream of data instead of an offline dataset. In [Le21], a combination of 

federated learning with continuous learning is developed resulting in a method called Federated 
Continuous Learning based on Broad Learning (FCL-BL). In this method, the problem of catastrophic 

forget is solved by the usage of Broad Learning algorithm [broad learning paper].  
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In [Yoon21] is proposed a method called Federated Weighted Inter-client Transfer (FedWeIT). In this 

method, there is a decomposition in the global network weights and in the called “sparse task-specific 

parameters” to let each client to receive a specific knowledge from other clients [Yoon21]. One of the 

goal of this method is to minimize the interference between tasks that are incompatible. The code of the 

method can be found in [Yoon21Code]. 

Even if Federated Learning is known as a privacy concerning algorithm by avoiding the sending of data 

through the network, there is still work aiming to improve the security of Federated Learning. As an 

example, in [Zuh2019] the security is improved by the usage of compression on the gradients. The 

authors proved that the compression of the gradients can improve the security against leakage without 

decrease the accuracy of the system. In [Huang2020], the security is improved also by the usage of 

compression. However, different from the previous work, in this method, the compression is done by 

net pruning.  

4.2.3.3 Overview of the method 

The proposed method is depicted in Figure 32. The first component that will be listed here is the Server 

Layer that is responsible for updating the global model based on the client model updates. The next 

component of the method is the Client Layer which is responsible for the training step based on its data. 

Instead of the static dataset, in this scenario, the data changes as new data appears to the client. This 

scenario can lead to the problem called catastrophic forgetting [YI20]. To describe this problem, Figure 

33 describes two datasets called “A” and “B”. In timestamp 0, the model is trained using the dataset 

“A”. In timestamp 1, the new data generated the dataset “B”. If the model is trained for dataset B, its 

new configuration and parameters will not be suitable for the old dataset “A” anymore. The model 

“forgets” all that was learned using the dataset “A”. One approach to overcome this issue is to train the 

new model using a merge of the datasets “A” and “B” creating the dataset “C”. However, this approach 

is not efficient in terms of computational cost because of the dataset growing process. 

 

Figure 32 big picture of the proposed method [YI20]. 

The proposed method overcomes this issue by using the technique called “Broad Learning” [Chen18]. 

This method resolves the catastrophic forgetting problem and is deployed in each client as described in 

Figure . In the first iteration of the method, the server layer deploys the initial global model for each 

client layer. In the client layer, the local training is done by using the broad learning technique. After 

the local train step, the client model update is sent to the server. The Server will update the global model 
only after a predetermined number of updated clients model is received. This approach is called 

“Asynchronous” because there is no necessity for all the selected client models to send to the server its 
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updates. Instead, only a few clients need to send it. This approach improves the speed of the global 

training as there is no necessity to wait for all the selected clients to send to the server the updates. 

 

Figure 33 catastrophic forgetting problem illustration. 

4.2.3.4 Integration in the architecture 

In the framework of AI@EDGE, federated learning in a continuous scenario can be implemented under 

the context of the AIFs. Each client should have an AIF responsible for local training and the cloud 

server has an AIF responsible for the global update model. Figure 34 illustrates the implementation of 

the proposed method in the framework of AI@EDGE using AIFs. In summary, an AIF is deployed in 

the server layer who is responsible for the global aggregation of the client updates and to generate a 

new version of the global model at each iteration of the federated learning algorithm. The second type 

of AIF is deployed in each client. In each client, the AIF is responsible for the continuous learning local 

algorithm, update the global model received by the server layer, and to send to the server the client 

updates. Regarding the usage of the interfaces, the interface IF3 is responsible for sending to the server 

the updates of the client where IF2 is responsible for sending to the client the global model parameters.  

This method can receive as input a specific data format depending on the application. As an example, 

at user application level, this method can receive the UE-level (described in Section 5.4) data to improve 

the capabilities of the application (e.g, by improving the model parameters given the change of the 

statistics of the user data) or can improve the eNodeB (described in Section 5.3) or gNodeB (described 

in Section 5.5) automation managements given these data input.  

To enable the deployment of this method with the necessary granularity of data, a data pipeline system 

should be designed to enable the delivery of the necessary data with the necessary granularity to each 

component of this method (e.g, the server AIF and the client AIFs). This data pipeline architecture 

design is proposed in Section 3.2. In the data pipeline system proposed in this project, the data collectors 

is used to collect the data from the data sources and deliver to the necessary components through the 

data ingestion pipeline. To avoid the unnecessary collection of the same data, the method can first check 

if the desired data is already in the data repository or in the data analytics component. This will avoid 

the unnecessary stream of data through the data pipeline system and will increase the granularity of the 

data needed. 
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Figure 34 continuous learning using federated learning in the AI@Edge framework 

4.2.4 Distributed and collaborative models for service placement on distributed and limited 

edge resources 

Networks will evolve into a broad intelligent and distributed system created by intelligent units. This 

collaborative intelligence will enable the various elements of the network and services to be self-

configured and dynamically self-managed [SUB21]. All of them will respond to a constantly changing 

environment, sharing knowledge of how to cope with their surroundings and generating behavior to 

obtain optimal responses with minimal human interference. In this way, solutions should be scalable to 

provide an elastic system, adapting to increasing or decreasing demands. 

In this scenario, due to the rapid growth of data services and applications both in volume and in variety, 

there is a need to scale up AI/ML/DL/RL techniques [YE20] [YU21]. Federated learning (FL) is 

proposed as a distributed ML solution for learning on edge devices [WAN19]. In FL, data does not 

leave users’ devices and all users collaboratively train a model without sharing their data [LAM20]. 

4.2.4.1 Objectives 

The main objective of this subsection is to develop and evaluate a distributed and collaborative system 

applying AI and NFV, placing, creating and executing functions at the edge according to the services 

and application control and management requirements. 

Thus, this subsection is mainly focused on algorithms and methods for enabling distributed AI/ML and 

federated learning over MEC and cloud infrastructures, supporting adaptive, re-scalable and resilient 
distributed computing infrastructures, encompassing local and global learning models for resilient 

infrastructure management and performance prediction. 

This work involves the following main sub-objectives: 

• According to the AI@EDGE defined architecture, model intelligent units or intelligent 

agents/multi-agents, semantic and syntactic representation models, action formats, as well as 

the language that describes them and their interfaces. Define intelligence performance-aware 

VNF placement algorithms to optimally locate agents according to certain parameters and 

constraints (about services, users, etc.) 

• Model the exchange of actions between agents, centralized or distributed, autonomous or 
cooperative, and control of distributed agents. 
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• Simulate distributed AI on the AI@EDGE architecture optimizing some objective (ex. % of 

max. successful services flows) based on: 

• Decentralized Distributed Deep Reinforcement Learning (RL) in a server-less architecture. In 

this solution, there is a need for optimal placement of VNFs acting as micro-clouds, deployed 

close to edge devices. These VNFs will be used to efficiently build DL/RL models at the edge, 

for faster DL/RL inference, and will support online and incremental learning, using 

continuously generated data from a large number of devices. The VNFs could be equipped with 

heterogeneous computing resources, and the VNFs connection and communication will be 

dynamic adapted to the services and applications requirements; 

• Federated learning to train machine learning models in a distributed system. This is a server-

less learning approach based on the cooperation of devices. The federated learning approach 

decentralizes training across devices dispersed across geography, and they collaboratively 

develop machine learning while keeping their personal data on their devices.  

We consider server-less architectures, without needing to manage dedicated servers or instances for the 

services and applications. Instead, we need to optimally locate the required stateless management and 

control functions close to the edge for providing faster services with minimum latency. Hence, applying 

AI for the control and management will not need to migrate large amounts of data into centralized 

clouds, improving the cost (e.g., bandwidth), performance, and privacy. 

4.2.4.2 State-of-the-art 

VNF is an important technology in the development and implementation of 5G networks, it provides 

greater elasticity to scale to larger networks providing greater efficiency and lower resource 

consumption, reducing operating and consumption expenses and also improving time response in the 

different services, thanks to the virtualization of the different functions [MI16].  

The VNF placement algorithms are a fundamental link to take advantage of the network resources 

optimally.  In order for the location of the nodes to be carried out in a more efficient way, the best set 

of parameters must be selected that allows optimizing the process of location of the nodes. In [SAN18], 

an investigation is carried out on state-of-the-art and a set of parameters to be used in a Placement 

algorithm is proposed, which helps to perform an evaluation of the location process for 5G networks 

and Edge Computing efficiently. 

In [SUB21], two deep learning models are proposed, one centralized and the other federated, to solve 

the problem of scaling the VNF. They perform a comparison of various deep learning models reviewing 

the advantages and disadvantages of FL over centralized learning algorithms, showing that federated 

learning has a lower performance than centralized learning for VNF autoscaling.  

Another study by Wu et al. [WU20] introduces BVCP (Border VNF Chain Placement), a novel VNF 

placement method that consists of dividing the network into multiple subnets and using the border 

hypervisors features, to allow the algorithm to be scalable for big networks. The results of the work 

show that the BVCP method outperforms the baseline algorithm Dynamic Network Function (DNF) in 

VNF chain placement. 

In the case of [CAO17], to solve the VNF location optimization problem, four genetic algorithms are 

proposed using the frameworks of two existing genetic algorithms, MOGA and NSGA II. The results 

show that the best algorithm is the Greedy-NSGA-II. Our work will use an approach based on [SUB21] 

that presents better results, more up-to-date algorithms, and satisfies the need to optimally locate agents 

according to certain defined parameters and restrictions. 

Due to its operation consisting of training the models in the client devices, Federated learning can be 

the target of different attacks that can compromise the security and information of the end-user. To 

solve this problem, in [ISA20], end-user security is addressed, proposing a security mechanism that can 
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be integrated into the 3GPP 5G Network Data Analytics (NWDA) architecture, and a multiparty 

computing protocol (MPC) to protect confidentiality is added. Although a network is never completely 

secure, this mechanism helps protect users’ confidential information. In [LIU20], a secure FL 

framework based on blockchain is proposed to prevent the intrusion of malicious clients that can attack 

and affect the entire FL process. The general idea of this paper is that the Aggregation Server can 

recognize unreliable FL participants and discard or exclude them from participating in the training. 

They also use local differential privacy techniques to prevent membership inference attacks. The results 

of the work show that both poisoning attacks and membership inference attacks can be effectively 

mitigated. 

4.2.4.3 Overview of the method 

The proposed method is composed of a Central FL Server, responsible for the aggregation and updating 

of a Global ML model, which includes the collection of the updated local model’s parameters from the 

Edge devices, the aggregation and updating of the Global model, and the sending of the Updated Global 

model to Edge devices to be used in the next iteration. The other components are Edge devices, the 

Edge AIFs are distributed by the Placement Algorithm and are responsible for the local update, which 

is the training process of the local models that uses the data of a certain number of clients devices to 

train the models. The main reason for using this model is the possibility that this Algorithm provides to 

distribute the learning task to the edges, and only transmit the updates of the locally trained model, 

without the need to send raw data to a Central Server. 

4.2.4.4 Integration in the architecture 

The proposed method has two types of AIFs, the server’s AIF and the local clients’ AIF. On one hand, 

the Server’s AIF is composed of four blocks: Placement, Moderator, Policies, and Aggregator. The 

Placement role is defining the location of the VNFs according to certain criteria. The Moderator role is 

reviewing the requirements and specifications that customers must meet (in this block more functions 

can be added to satisfy the new algorithm functions). The Aggregator is in charge of sending the Global 

Model to the clients and then generating a new Global Model. The Policies block defines 

policies/directives to reach a certain level of model accuracy.  

On the other hand, the client’s AIFs are in charge of training the models in each client. Figure 35 shows 

three interfaces: IF1 is responsible for including the initial parameters of the previously trained Global 

Model and the policies/directives that the model must comply with to reach the desired level of accuracy 

to complete the training. Through the IF2 interface, the exchange of information between the 

Aggregation/Central Server and clients’ devices is carried out, i.e., the parameters of the models are 

transmitted through this interface. IF3 is the data exchange interface, it carries out the exchange of 

clients’ information such as connectivity, load level, computing resources, etc. 
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Figure 35 AIFs and interfaces of the proposed method 

For each type of AIF, the interfaces perform different functions. In Server’s AIF, the IF1 interface 

transmits the initial parameters of the Global Model that will be sent to the local devices to start the FL, 

defines and sends the policies/directives that the Global Model must comply with to reach the desired 

level of accuracy to complete the training. IF2 sends the Global Model’s parameters to the local devices 

to start the training locally and receives updates from Local Models to update the Global Model. 

Interface IF3 receives and reviews the requirements that clients must meet to participate in the FL, such 

as connectivity, load level, computing resources, etc. In the AIF of the local clients’ side, the interface 

IF2 receives the Global Model’s parameters to start the training locally and sends Local Models updates 

to update the Global Model. IF3 sends the client information necessary to verify the requirements that 

clients must meet to participate in the FL. 

4.2.5 Data augmentation to increase the robustness of learning 

For decades, researchers and practitioners in networking have explored different ML techniques to 

assist network operations [Bou18]. A field that largely relies on ML is network security to detect attacks 

and anomalies [Dap15]. With the growing variety and complexity of attacks, using Machine Learning 

(ML) for network security is now unavoidable and commercial products in this sector also started to 

integrate Artificial Intelligence (AI) methods. However, like in other domains, among the obstacles 

against their large adoption in practice, we can mention the lack of these techniques to be able to 

generalize the behavior or attacks they have learned. Actually, the learning suffers from the lack of 

enough labeled data to represent the different and possibly infinite variation of attacks. To avoid this 

problem of over-fitting, different approaches exist. Among them, data augmentation consists into 
extending artificially the set of input data for learning in a realistic way. Although it is not specific to 
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network security, the problem is exacerbated due to the presence of attackers that induce larger and 

unpredictable variations in data.  

4.2.5.1 Objectives 

When deploying an AIF or an application leveraging multiple AIF, an issue concerns how such a 

deployment fits to the current context and especially to the data to be analyzed. Two cases may occur: 

• Case 1: the model was pre-trained on a dataset with different characteristics. So, the model is 

unable to infer correct information (supervised training). For network security, it can be simply 

a dataset that does not contain all attacks that an AIF module is supposed to detect when 

deployed.  

• Case 2: the model is trained with representative data, but its performance is very low. In that 

case, the model and so the AIF was validated with another dataset and have proved good 

performance, but it is not efficient with data presenting new characteristics, e.g., underlying 

statistics about data distribution are different. 

The problem is summarized in Figure 36. In the ideal case, the ML method has been trained with data 

that represents data which will be used for the inference in the second stage. However, in many cases, 

the data space is larger than what has been used for learning. It can be infinite but most of all even 

unknown. For example, we cannot always know the boundary of the data to be analyzed. In the worst 

case, the data given as input for the inference of the trained model are completely different. In that case, 

performance will be dramatically low by nature. The problem is more challenging as there are more 

dimensions over data. 

 

Figure 36 Obj-DataAugmentation: Summary of the problem of data representativeness in ML algorithms 

In case 1, the objective is to construct datasets used for learning with a higher coverage of possible 

cases to support a higher generalization of an AIF. Obviously, our goal is not to create new types of 

attack in the context of security. This is a very challenging problem and it is  out of the scope of our 

study. However, the goal is to generate data that could present a new configuration of a given attack in 

an original dataset. For example, our goal could be to artificially change the size of a botnet and 

automatically infer what the impact on the network traffic present in a dataset. 

In case 2, the objective is also to construct or modify datasets but with different goals. In that case, our 

objective would be to automatically derive when an AIF and maybe a set of AIFs is valid to be deployed 

according to an expected accuracy. In a nutshell, the objective here is to identify what are the “borders” 

in the data space that split good and bad performance of an AIF. It thus supports the decision of the 

applicability of an AIF. Moreover, such a technique can help to choose among multiple AIFs fulfilling 

the same functionality, by evaluating each of them according to the condition of their deployment.  The 

final objective here is to evaluate if data augmentation technique is relevant to evaluate the robustness 

of an attack detection mechanism based on a ML classifier and if this can be used to produce more 

robust classifiers. Concretely, it consists in extending datasets of network traffic containing attacks and 

evaluate the accuracy of the ML classifier with the newly generated data (with or without retraining). 
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4.2.5.2 State-of-the-art 

In the last decade, the interest in data augmentation techniques has increased. It first focused on data 

augmentation techniques for image datasets to provide better accuracy to image classifiers. A new 

algorithm AutoAugment proposed in [Cub19] searches for best augmentation policies. Their method 

consists in two components: a search algorithm implemented as an RNN and a search space. A policy 

is composed in 5 sub-policies, each one has two operations to apply on a image. There are 16 operations, 

the magnitudes of these operations (translate, rotate...) are divided into 10 values and the probabilities 

to apply one in 11 values. It becomes a search problem with (16x10x11)^10 possibilities which is 

computationally expensive but offer better results than baseline models. The authors in [Ho19] improve 

AutoAugment technique and propose Population Based Augmentation (PBA). Their goal is to learn 

schedules of augmentation policy in contrast to AutoAugment which learn a fixed policy. PBA is based 

on Population Based Training (PBT) that optimizes the weights and hyperparameters of the neural 

network, copying the weights of top performers and muting the hyperparameters during training. Their 

technique offers comparable results than AutoAugment but requires 1.000x less GPU hours to produce 

it.  

Another improvement is proposed by the research done in [Cub20] by reducing the search space. They 

found that in PBA the optimal magnitude of augmentation increases during the training, RandAugment 

does not search optimal magnitudes but have a fixed magnitudes schedule. Their algorithm contains 

two human-interpretable parameters: N (number of transformation) and M (magnitudes) and they use a 

naive grid search for hyperparameters optimization which offers similar results than PBA and 

AutoAugment this time with a reduced search space. 

More recently, some studies have been focused on data generation. Particularly on unbalanced datasets 

to generate synthetic instances belonging to minority classes. With the emergence of deep learning, new 

techniques emerge. Generative Adversarial Networks (GAN) is proposed in [Goo14]. It consists in two 

neural networks defined as two multi-layer perceptrons, a discriminator D and a generator G playing a 

two-player minimax game. Where G try to generate new samples and D try to predict if the data 

generated are real or fake. The goal of G is to maximize the probability of D of doing mistakes. Image 

classification is not the only domain of research, recently with the emergence of new technologies, the 

industry 4.0, the spread of IoT, etc. Network security becomes more and more challenging. In particular, 

network anomaly detection gain in interest but network datasets are unbalanced where the anomalies 

are lost in normal samples. The authors in [Ola20] show that a naive adoption of GAN does not work 

well for anomaly detection and propose Divide Augment Combine (DAC). Samples are grouped on 

their unique characteristics, then augmented on a group basis using GAN and the extended data are fed 

into a classifier to produce a learning model. They propose two grouping methods: by cluster and by 

attack, the first one seems to be better and offers significant results. 

As highlighted, GAN [Goo14] has gained a large interest to produce robust models by enabling 

automated generation of data but are prone to the mode collapse problem. It results in producing 
artificial data with low variations limiting the value of the newly generated data. Alternative approaches 

can rely on applying a well selected, or learned, sequence of data transformations [Cub20] also named 

as data augmentation policy. Our technique will be inspired from the latter and others techniques 

existing in this field [Cub19,Ho19] 

4.2.5.3 Overview of the method 

From a general perspective, a data augmentation technique relies on the following steps: 

1 Definition of transformations to be applied on the dataset 

2 Definition of the policy 

2.1 Number of operations to be applied 

2.2 Selection of operations to be applied (the order of the sequence is important as operations 

can be successively applied to the same data) 
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2.3 Definition of the hyper-parameters of the operations 

3 Validation of the data augmentation policy 

Actually, step 2 can be statically and manually defined, generated dynamically or learned to optimize 

the generation of the parameters. Indeed, using a validation set, the augmentation policy can be 

evaluated and considered as effective or not. Different optimization techniques can be used for this task 

including a grid search over the different operations and their parameters assuming the number of 

operations is human defined.  

Most existing techniques focus on image processing and rely on corresponding transformation: rotation, 

change color, change contrast or translate. To the best of our knowledge, no work exists in the area of 

network processing. Obviously, image operations are meaningless for the type of data we will rely on, 

mostly network capture contains anomalies.   

Defining relevant operations is thus critical. Once done, we can rely on off-the-shelf techniques and 

tools cited above. Most features are or can be transposed numerically but a blind approach applying 

random numeric operations will not be cost-effective and would require a large amount of time to find 

a suitable policy. Similarly, for image processing, the operations have not been randomly defined.  

To identify these relevant operations, we define the following method: 

• List all features used in relevant and accessible datasets focusing first on UBN datasets 

(https://www.unb.ca/cic/datasets/) 

• For each feature 

o Characterize its type (numeric, categorical, boolean) 

o Identify the boundaries (min, max, set of values) 

o Identify if dependencies exist among the features 

o For each type of feature 

• Define the type of applicable operations (addition, select of value in a set…) 

• Evaluate a priori the impact of the operations and their parameters and define 

limitations, for example based on the identified boundaries (do not apply an 

operation that lead to a value which will never be observed in reality, for example 

the MTU limits the size of network packet) 

• For dependent features, model the dependency and its impact on the operations to 

be jointly applied. 

https://www.unb.ca/cic/datasets/
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4.2.5.4 Integration in the architecture 

 

Figure 37 Overview of a dataset generation AIF 

In Figure 37, our technique is structured as a single AIF with three internal components: 

• Transformation: it takes as input a set of transformations parameters to be applied on 

generation function.  For example, if we want to generate a new set of images, the different 

applicable transformations can be rotation of the image, change the brightness of the image, or 

change some colors. The transformation task will keep in memory the different 

transformations. 

• Policies: initially, the policies task will be statically and manually defined. It will define how 

to apply the transformations (“Random”, “Each x lines”, “Only BW”), the different applied 

transformations (“Rotation”, “Brightness”, “Color”), the order of those transformations or 

eventually some hyper-parameters (e.g., how many rotations or degrees an image will be rotated 

in the case of the Rotation transformation) 

• Generator: the generator takes the pre-configured transformations from the transformation 

task and apply them according to user-defined policies from the policies task. 

• Validator: Once the new dataset is generated, the validator will take the new one as input and 

will verify the generation efficiency. This data will be sent through an interface that will be 

fully defined in the next stages of the project. 

The AIF can be used as an action by the orchestrator in the closed-loop in order to generate a new 
dataset to assess a priori the capacity of another AI-based function to be generalized. The AIF aims to 

transform a dataset into a new dataset with generated data into it. It takes some different inputs on each 

interface as follows: 

• IF1: Parameters for the transformation feature 

• IF1: Parameters for the policies features 

• IF3: The AIF takes a dataset for the data augmentation  

• IF3: Augmented dataset in output 
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4.2.5.5 Preliminary results 

The dataset used for this research is the UNSW-NB15 dataset. It was created by the university of new 

south wales. They used the IXIA PerfectStorm tool to create a mix of the modern normal and abnormal 

network traffic and simulate nine different types of attacks. They captured traffic in the form of packet 

with the tcpdump tool. They simulated the traffic during two days: 16 hours on the 22nd of January 2015 

and 15 hours on the 17th of February 2015 and they captured 100 GBs of data. Then, they splat the pcap 

files into 1000 MB smaller ones. Finally, they used Argus and Bro-ids tools and twelve different 

algorithms to analyze the flow of the connection packets in order to create reliable features. To represent 

real life flows, the dataset is very unbalanced. Table 3 shows the number of samples in each category 

and the percentage of each class for the entire dataset. 

Table 3 Distribution of classes into the dataset 

Classes Number of records Percentage of the dataset 

Normal 2 218 761 87.35 

Generic 215 481 8.48 

Exploits 44 525 1.75 

Fuzzers 24 246 0.95 

DoS 16 353 0.64 

Reconnaissance 13 987 0.55 

Analysis 2 677 0.11 

Backdoors 2 329 0.09 

Shellcode 1 511 0.07 

Worms 174 0.01 

To counter the problem of unbalanced dataset, a technique of generation has been explored. 

We used the GAN framework and especially the DAC (Divide Augment Combine) technique explained 

in the State-of-the-Art section. DAC was used for the multiclass generation, meaning that for each 

attack, a GAN model was trained according to the distribution of each attack. For the binary, the normal 

and attack samples were generated together. As the GAN generated float values to express the label of 

both categories, a threshold of 0.5 was used, each sample with a value label above this threshold was 

set to 1 as for the anomalies and under to 0 for the normal ones. 

The results of the classification before and after the augmentation are reported in Table 4 Results of the 

classification before and after the . 

Table 4 Results of the classification before and after the augmentation 

(a) Binary classification (b) Multiclass classification 

 Acc. Pre. Rec. F1-sc. Acc. Pre. Rec. F1-sc. 

Original 99.42 99.02 98.34 98.68 98.12 78.86 52.67 53.94 

Augmented 99.42 99.01 98.34 98.98 98.12 78.86 52.78 54.02 
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The purpose is different whether the classification is binary or multiclass. In the first classification, we 

aim to know if there is an attack on the network or not independent of the type of the attack. In the 

second classification, we aim to know exactly which attack is used among the abnormal data. The 

accuracy for the multiclass classification on unbalanced data is not enough to represent the effectiveness 

of the model. The precision, the recall and the F1-score are used to have a better understanding as it is 

possible to express these metrics tacking into account the unbalanced data. The fact that the dataset is 

really unbalanced makes the training more difficult. The train will focus on the majority classes and 

almost ignore the minority ones. For this reason, the last two metrics are not as high as the accuracy. A 

solution to overcome this problem could be re-balance the dataset using the GAN. Unfortunately, the 

GAN used here does not improve the results, a reason could be that the data are too complicated to 

generalize. The GAN learn the distribution of the training set only (not with the test set). The GAN 

manages to create a distribution that look like real, but the generated sample seems to be not used for 

the test. The training scores increase, but the test does not. The main reason could be that the distribution 
of the fake sample is too different compared to the test one as the GAN is trained on the training part 

of the dataset. The generated samples act like a noise and are not used. 

  



 

 

D3.1 Initial report on systems and methods for AI@EDGE platform automation 

 

 

AI@EDGE (H2020-ICT-52-2020)  72 

 

5. Data sources 

In this section, we report on raw data available to AI/ML algorithms. When applicable, we also describe 

how derived data can be created starting from the raw data. 

5.1 Container-level data 

Due to their ephemeral nature, containers are rather complex and more challenging to monitor compared 

to traditional applications. In the state-of-the-art, several tools exist to collect and store containers 

runtime metrics, and CAdvisor (Container Advisor) [CAdvisor] is one of the most used. It collects 

resource isolation parameters, historical resource usage, histograms of complete historical resource 

usage and network statistics. It is natively embedded into Kubernetes, where it exposes metrics in the 

standard Prometheus format. Table 5 summarizes the metrics collected by Kubernetes embedded 

CAdvisor used in the SYRROCA framework (Section 4.2.1). It is worth noticing that the collection rate 

can be tuned. 

Table 5 CAdvisor raw data information 

name 
collection 

rate  
type 

Cumulative/

Instant 

timestamp 5s string I 

container_cpu_load_average_10s 5s string I 

container_cpu_load_average_10s 5s string I 

container_cpu_system_seconds_total 5s string C 

container_cpu_usage_seconds_tota 5s string C 

container_cpu_user_seconds_total 5s string C 

container_fs_inodes_free 5s string I 

container_fs_inodes_total 5s string I 

container_fs_io_current 5s string I 

container_fs_io_time_seconds_total 5s string C 

container_fs_io_time_weighted_seconds_total 5s string C 

container_fs_limit_bytes 5s string I 

container_fs_reads_bytes_total 5s string C 

container_fs_read_seconds_total 5s string C 

container_fs_reads_merged_total 5s string C 

container_fs_reads_total 5s string C 

container_fs_sector_reads_total 5s string C 

container_fs_sector_writes_total 5s string C 
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container_fs_usage_bytes 5s string I 

container_fs_writes_bytes_total 5s string C 

container_fs_write_seconds_total 5s string C 

container_fs_writes_merged_total 5s string C 

container_fs_writes_total 5s string C 

container_last_seen 5s string I 

container_memory_cache 5s string I 

container_memory_failcnt 5s string C 

container_memory_failures_total 5s string C 

container_memory_mapped_file 5s string I 

container_memory_max_usage_bytes 5s string I 

container_memory_rss 5s string I 

container_memory_swap 5s string I 

container_memory_usage_bytes 5s string I 

container_memory_working_set_bytes 5s string I 

container_network_receive_bytes_total 5s string C 

container_network_receive_errors_total 5s string C 

container_network_receive_packets_dropped_total 5s string C 

container_network_receive_packets_total 5s string C 

container_network_transmit_bytes_total 5s string C 

container_network_transmit_errors_total 5s string C 

container_network_transmit_packets_dropped_total 5s string C 

container_network_transmit_packets_total 5s string C 

container_spec_cpu_period 5s string I 

container_spec_cpu_shares 5s string I 

container_spec_memory_limit_bytes 5s string I 

container_spec_memory_reservation_limit_bytes 5s string I 

container_spec_memory_swap_limit_bytes 5s string I 

container_start_time_seconds 5s string I 



 

 

D3.1 Initial report on systems and methods for AI@EDGE platform automation 

 

 

AI@EDGE (H2020-ICT-52-2020)  74 

 

container_tasks_state 5s string I 

5.2 Physical server-level data 

Unix-like systems provide several means for collecting hardware and OS metrics. Among them, 

Prometheus NodeExporter [NodeExporter] provides a complete and extensible mean to retrieve 

physical server metrics. As shown in Table 6, default collected metrics span the CPU, the memory, the 

disk, and the network. As for the virtual level metrics, the collection rate is tunable. 

Table 6 NodeExporter raw data information 

name 
collection 

rate 
type cumulative/instant 

timestamp 5s string I 

node_cpu_seconds_total_mode_idle 5s string C 

node_cpu_seconds_total_mode_iowait 5s string C 

node_cpu_seconds_total_mode_irq 5s string C 

node_cpu_seconds_total_mode_nice 5s string C 

node_cpu_seconds_total_mode_softirq 5s string C 

node_cpu_seconds_total_mode_steal 5s string C 

node_cpu_seconds_total_mode_system 5s string C 

node_cpu_seconds_total_mode_user 5s string C 

node_cpu_core_throttles_total 5s string C 

node_cpu_package_throttles_total 5s string C 

node_cpu_frequency_max_hertz 5s string I 

node_cpu_frequency_min_hertz 5s string I 

node_cpu_guest_seconds_total_mode_nice 5s string C 

node_cpu_guest_seconds_total_mode_user 5s string C 

node_cpu_scaling_frequency_hertz 5s string I 

node_cpu_scaling_frequency_max_hrts 5s string I 

node_cpu_scaling_frequency_min_hrts 5s string I 

node_context_switches_total 5s string C 

node_disk_io_now 5s string I 

node_disk_io_time_seconds_total 5s string C 

node_disk_io_time_weighted_seconds_tota 5s string C 
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node_disk_read_bytes_total 5s string C 

node_disk_read_time_seconds_total 5s string C 

node_disk_reads_completed_total 5s string C 

node_disk_reads_merged_total 5s string C 

node_disk_write_time_seconds_total 5s string C 

node_disk_writes_completed_total 5s string C 

node_disk_writes_merged_total 5s string C 

node_disk_written_bytes_total 5s string C 

node_boot_time_seconds 5s string I 

node_arp_entries 5s string I 

node_memory_Active_anon_bytes 5s string I 

node_memory_AnonHugePages_bytes 5s string I 

node_memory_AnonPages_bytes 5s string I 

node_memory_Bounce_bytes 5s string I 

node_memory_Buffers_bytes 5s string I 

node_memory_Cached_bytes 5s string I 

node_memory_CmaFree_bytes 5s string I 

node_memory_CmaTotal_bytes 5s string I 

node_memory_CommitLimit_bytes 5s string I 

node_memory_Committed_AS_bytes 5s string I 

node_memory_DirectMap1G_bytes 5s string I 

node_memory_Dirty_bytes 5s string I 

node_memory_HardwareCorrupted_bytes 5s string I 

node_memory_HugePages_Free 5s string I 

node_memory_HugePages_Rsvd 5s string I 

node_memory_HugePages_Surp 5s string I 

node_memory_HugePages_Total 5s string I 

node_memory_Hugepagesize_bytes 5s string I 

node_memory_Inactive_anon_bytes 5s string I 

node_memory_KernelStack_bytes 5s string I 

node_memory_Mapped_bytes 5s string I 
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node_memory_MemAvailable_bytes 5s string I 

node_memory_MemFree_bytes 5s string I 

node_memory_MemTotal_bytes 5s string I 

node_memory_Mlocked_bytes 5s string I 

node_memory_NFS_Unstable_bytes 5s string I 

node_memory_PageTables_bytes 5s string I 

node_memory_SUnreclaim_bytes 5s string I 

node_memory_SwapCached_bytes 5s string I 

node_memory_SwapFree_bytes 5s string I 

node_memory_SwapTotal_bytes 5s string I 

node_memory_Unevictable_bytes 5s string I 

node_memory_VmallocChunk_bytes 5s string I 

node_memory_VmallocTotal_bytes 5s string I 

node_memory_VmallocUsed_bytes 5s string I 

node_memory_WritebackTmp_bytes 5s string I 

node_memory_Writeback_bytes 5s string I 

node_netstat_Icmp6_InErrors 5s string I 

node_netstat_Icmp6_InMsgs 5s string I 

node_netstat_Icmp_InErrors 5s string I 

node_netstat_Icmp_InMsgs 5s string I 

node_netstat_Icmp_OutMsgs 5s string I 

node_netstat_Ip6_InOctets 5s string I 

node_netstat_Ip6_OutOctets 5s string I 

node_netstat_IpExt_InOctets 5s string I 

node_netstat_IpExt_OutOctets 5s string I 

node_netstat_Ip_Forwarding 5s string I 

node_netstat_TcpExt_ListenDrops 5s string I 

node_netstat_TcpExt_ListenOverflows 5s string I 

node_netstat_TcpExt_SyncookiesFailed 5s string I 

node_netstat_TcpExt_SyncookiesRecv 5s string I 

node_netstat_TcpExt_SyncookiesSent 5s string I 
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node_netstat_TcpExt_TCPSynRetrans 5s string I 

node_netstat_Tcp_ActiveOpens 5s string I 

node_netstat_Tcp_CurrEstab 5s string I 

node_netstat_Tcp_InErrs 5s string I 

node_netstat_Tcp_InSegs 5s string I 

node_netstat_Tcp_OutSegs 5s string I 

node_netstat_Tcp_PassiveOpens 5s string I 

node_netstat_Tcp_RetransSegs 5s string I 

node_netstat_Udp6_InErrors 5s string I 

node_netstat_Udp6_NoPorts 5s string I 

node_netstat_UdpLite6_InErrors 5s string I 

node_netstat_UdpLite_InErrors 5s string I 

node_netstat_Udp_InDatagrams 5s string I 

node_netstat_Udp_InErrors 5s string I 

node_netstat_Udp_NoPorts 5s string I 

node_netstat_Udp_OutDatagrams 5s string I 

node_network_receive_bytes_total 5s string C 

node_network_receive_compressed_total 5s string C 

node_network_receive_drop_total 5s string C 

node_network_receive_errs_total 5s string C 

node_network_receive_fifo_total 5s string C 

node_network_receive_frame_total 5s string C 

node_network_receive_multicast_total 5s string C 

node_network_receive_packets_total 5s string C 

node_network_speed_bytes 5s string I 

node_network_transmit_bytes_total 5s string C 

node_network_transmit_carrier_total 5s string C 

node_network_transmit_colls_total 5s string C 

node_network_transmit_compressed_total 5s string C 

node_network_transmit_drop_total 5s string C 

node_network_transmit_errs_total 5s string C 
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node_network_transmit_fifo_total 5s string C 

node_network_transmit_packets_total 5s string C 

node_network_transmit_queue_length 5s string I 

node_sockstat_FRAG_inuse 5s string I 

node_sockstat_FRAG_memory 5s string I 

node_sockstat_RAW_inuse 5s string I 

node_sockstat_TCP_alloc 5s string I 

node_sockstat_TCP_inuse 5s string I 

node_sockstat_TCP_mem 5s string I 

node_sockstat_TCP_mem_bytes 5s string I 

node_sockstat_TCP_orphan 5s string I 

node_sockstat_TCP_tw 5s string I 

node_sockstat_UDPLITE_inuse 5s string I 

node_sockstat_UDP_mem 5s string I 

node_sockstat_UDP_mem_bytes 5s string I 

node_sockstat_sockets_used 5s string I 

5.3 eNodeB and UE level data 

To get an overall view of the state of a virtualized service, besides monitoring the state of the 

virtualization infrastructure, it is advisable to collect metrics regarding the state of the service itself. As 

also recommended by ETSI, most native cloud network services expose some metrics by default. This 

is the case, for example, of the srsRAN [srsRAN] software used in the simulations performed on the 

SYRROCA framework when applied to the use case of a 5G core. Table 7 and Table 8summarizes the 

metrics exposed by the srsRAN eNB simulator and by the srsUE User End simulator, respectively. The 

default metrics collection rate is 1 second in both cases, but the rate is adjustable. Furthermore, metrics 

are provided on a per-UE basis for the downlink (DL) and uplink (UL), respectively. 

Table 7 SRS eNodeB raw data information 

name  collection rate type cumulative/instant 

Radio Network Temporary Identifier (UE identifier) 1s string I 

Channel Quality Indicator reported by the UE (1-15) 1s string I 

Rank Indicator reported by the UE (dB) 1s string I 

Modulation and coding scheme (0-28) 1s string I 

Bitrate (bits/sec) 1s string I 

Number of packets succesfully sent 1s string C 
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Number of packets dropped 1s string C 

% of packets dropped 1s string C 

PUSCH SNIR (Signal-to-Interference-plus-Noise 

Ratio) 
1s string I 

PUCCH SNIR 1s string I 

Power Headroom (dB) 1s string I 

Buffer Status Report - data waiting to be transmitted 

as reported by the UE (bytes)  
1s string I 

Cpu  1s string I 

Memory  1s string I 

** The latest version of srsRAN (21.10 with an initial version of gNodeB) outputs the same data. 

Table 8 srsUE raw data information 

name  
collection 

rate 
type cumulative/instant 

Component carrier 1s string I 

Reference Signal Receive Power (dBm) 1s string I 

Pathloss (dB) 1s string I 

Carrier Frequency Offset (Hz) 1s string I 

Modulation and coding scheme (0-28) 1s string I 

Signal-to-Noise Ratio (dB) 1s string I 

Average number of turbo decoder iterations 1s string I 

Bitrate  1s string I 

Block error rate 1s string I 

Timing advance (uS) 1s string I 

Uplink buffer status - data waiting to be transmitted (bytes) 1s string I 

Cpu  1s string I 

Memory  1s string I 

Cc  1s string I 

5.4 WiFi AP-level data 

5G-EmPower virtualizes Wi-fi access points and offer different QoS to the users. Table 9 summarizes 

the list of raw collected metrics from Access points. The collection rate is tunable.   
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Table 9 5G-EmPOWER Access Point raw data information 

name  collection rate type cumulative/instant 

Neighboring Wi-Fi Stations RSSI 
Arbitrary (Min 

100ms) 
integer I 

Neighboring Wi-Fi Access Points RSSI 
Arbitrary (Min 

100ms) 
integer I 

Transmitted bytes/packets 
Arbitrary (Min 

100ms) 
integer C 

Received bytes/packets 
Arbitrary (Min 

100ms) 
integer C 

Downlink goodput 
Arbitrary (Min 

100ms) 
float I 

Number of transmitted frames (including failures) 
Arbitrary (Min 

100ms) 
integer C 

Number of successfully transmitted frames 
Arbitrary (Min 

100ms) 
integer C 

5.5 Application server-level data 

These data sources are application-specific and listed for each application that the connect-compute 

platform supports. Table 10 lists the data sources from a video streaming application using the DASH 

protocol.  

Table 10 Video streaming application data sources 

Name  Collection rate Type Cumulative/Instant 

#video segment requests sent out in the 

previous window  
Configurable (2-16s) integer Cumulative 

Bitrate of the previous segment requested Event triggered integer Instant 

Throughput over the last downloaded 

segment 
Event triggered  Instant 

Throughput over the last 10 s 10s integer Cumulative 

Bytes in the video playback buffer Configurable (2-16s) integer Instant 

#video segments in the playback buffer Configurable (2-16s) integer Instant 

5.6 Network performance real-time monitoring 

Table 11 lists KPI data that can be collected from the Athonet 5G core network in Prometheus format. 

Prometheus (https://prometheus.io/) is an open-source systems monitoring and alerting toolkit and 
the core exposes the unaltered upstream Prometheus API. The following table shows a brief description 

of the KPI in 3GPP terminology or of the alert, its type, and a reference to the 3GPP technical 

specification document (if any). 

https://prometheus.io/
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Table 11 Athonet core network KPI data 

Description of the collectable KPI or alert Type 

3GPP 

specification 

reference 

Number of UPF sessions KPI NA 

Number of GTP-U (N3) interfaces KPI 
TS 28.552 

5.4.1 

Number of UPF IP (N6) interfaces KPI 
TS 28.552 

5.4.2 

Number of GTP-U (N3) packets KPI 
TS 28.552 

5.4.1 

Number of UPF IP (N6) packets KPI 
TS 28.552 

5.4.2 

Number of UPF PFCP (N4) messages KPI NA 

Number of Users in the SMF KPI 
TS 28.552 

5.3.1 

Number of Active Session in the SMF KPI 
TS 28.552 

5.3.1 

Number of DNNs supported by the SMF KPI 
TS 28.552 

5.3.1 

NGAP RRC Establishment Causes KPI 
TS 28.552 

5.2.2 

Number of AMF NGAP messages received KPI 
TS 28.552 

5.2.2 

Number of devices registered in the AMF KPI 
TS 28.552 

5.2.2 

Number of active device connections in the AMF KPI 
TS 28.552 

5.2.2 

RAN Nodes status KPI 
TS 28.552 

5.2.2 

Overall CPU usage above 50% for more than a minute Alert NA 

Memory usage above 70% Alert NA 

Memory usage above 90% Alert NA 

Disk usage above 70% Alert NA 

Disk usage above 90% Alert NA 
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6. Conclusions 

This deliverable reported on the achievements related to the development of systems and methods for 

the automation of the AI@EDGE connect-compute platform. Initial descriptions of the internal design 

of the Network and Service Automation Platform (NSAP) have been provided. The NSAP is a 

framework for automation of network management that provides an environment for data-driven 

methods supporting decision making. 

The design of the NSAP embraces the concept of closed-loop control, where decision-making is 

automated based on data-driven AI/ML-based methods and algorithms. The overall goal is to minimise 

the need for the human operator to analyse the current state, take decisions, and to implement corrective 

actions. The data-driven methods and algorithms are supported by monitoring data and other system 
data in an efficient and consistent manner through a set of common data pipelines. 

An initial collection of methods and algorithms for automation and learning for network management 

purposes are described with some preliminary results. The methods and algorithms can have different 

roles, for example, prediction or estimation of system parameters in the near future, which could be part 

of a data pipeline, network management decision-making, for example of service placement or resource 

allocation, or supporting the needs of an application service to meet its service requirements. 

The achievements reported in the deliverable are the progress towards the overall project Objective 3 

on designing and implementing a general-purpose network automation framework, capable of 

supporting flexible and reusable pipelines for the end-to-end creation, utilisation, and adaptation of 

secure and privacy-preserving AI/ML models. 
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